已知△ABC中,AB=AC.(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;(2)如图2,在△AD
已知△ABC中,AB=AC.(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且...
已知△ABC中,AB=AC.(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的长;(3)如图3,在△ADE中,当BD垂直平分AE于H,且∠BAC=2∠ADB时,试探究CD2,BD2,AH2之间的数量关系,并证明.
展开
1个回答
展开全部
(1)如图1,证明:∵∠DAE=∠BAC,
∴∠DAE+CAE=∠BAC+∠CAE,
即∠DAC=∠BAE.
在△ACD与△ABE中,
,
∴△ACD≌△ABE(SAS),
∴CD=BE;
(2)连接BE,
∵AD=AE,∠DAE=60°,
∴△ADE是等边三角形,
∵CD垂直平分AE,
∴∠CDA=
∠ADE=
×60°=30°,
∵△ABE≌△ACD,
∴BE=CD=4,∠BEA=∠CDA=30°,
∴BE⊥DE,DE=AD=3,
∴BD=5;
(3)如图,过B作BF⊥BD,且BF=AE,连接DF,
则四边形ABFE是平行四边形,
∴AB=EF,
设∠AEF=x,∠AED=y,
则∠FED=x+y,
∠BAE=180°-x,∠EAD=∠AED=y,∠BAC=2∠ADB=180°-2y,
∠CAD=360°-∠BAC-∠BAE-∠EAD=360°-(180°-2y)-(180°-x)-y=x+y,
∴∠FED=∠CAD,
在△ACD和△EFD中,
,
∴△ACD≌△EFD(SAS),
∴CD=DF,
而BD2+BF2=DF2,
∴CD2=BD2+4AH2.
∴∠DAE+CAE=∠BAC+∠CAE,
即∠DAC=∠BAE.
在△ACD与△ABE中,
|
∴△ACD≌△ABE(SAS),
∴CD=BE;
(2)连接BE,
∵AD=AE,∠DAE=60°,
∴△ADE是等边三角形,
∵CD垂直平分AE,
∴∠CDA=
1 |
2 |
1 |
2 |
∵△ABE≌△ACD,
∴BE=CD=4,∠BEA=∠CDA=30°,
∴BE⊥DE,DE=AD=3,
∴BD=5;
(3)如图,过B作BF⊥BD,且BF=AE,连接DF,
则四边形ABFE是平行四边形,
∴AB=EF,
设∠AEF=x,∠AED=y,
则∠FED=x+y,
∠BAE=180°-x,∠EAD=∠AED=y,∠BAC=2∠ADB=180°-2y,
∠CAD=360°-∠BAC-∠BAE-∠EAD=360°-(180°-2y)-(180°-x)-y=x+y,
∴∠FED=∠CAD,
在△ACD和△EFD中,
|
∴△ACD≌△EFD(SAS),
∴CD=DF,
而BD2+BF2=DF2,
∴CD2=BD2+4AH2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询