共有12级台阶,每次只能上一级或二级,一共有多少种不同的走法
2个回答
展开全部
一共有233种不同的走法。
这是一个经典的递归问题,也就是斐波那契数列:f(n) = f(n-1) + f(n-2)。如果先选1个台阶,那么后面就会剩下n-1个台阶,也就是会有f(n-1)种走法。如果先选2个台阶,后面会有f(n-2)个台阶。因此,对于n个台阶来说,就会有f(n-1) + f(n-2)种走法。
因此,1个台阶f(1)=1,f(2)=2,f(3)=3,f(4)=5,f(5)=8,f(6)=13,f(7)=21,f(8)=34,f(9) =55,f(10)=89,f(11)=89+55=144,f(12)=144+89=233。
概述
斐波那契数列的定义者,是意大利数学家莱昂纳多·斐波那契(LeonardoFibonacci),生于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的莱昂纳多”。
1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点于阿尔及利亚地区,莱昂纳多因此得以在一个阿拉伯老师的指导下研究数学。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询