微分方程y'-x-e^x=0的通解

 我来答
匿名用户
2016-05-05
展开全部
e^x是二阶线性齐次常微分方程y''+q(x)y=0的一个解,e^x的二阶导数=e^x所以代入方程,得e^x+q(x)e^x=01+q(x)=0q(x)=-1所以方程为y''-y=0特征方程为r²-1=0(r+1)(r-1)=0r1=-1,r2=1所以通解为y=c1e^(-x)+c2e^x
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式