微分方程y'-x-e^x=0的通解
2016-05-05
展开全部
e^x是二阶线性齐次常微分方程y''+q(x)y=0的一个解,e^x的二阶导数=e^x所以代入方程,得e^x+q(x)e^x=01+q(x)=0q(x)=-1所以方程为y''-y=0特征方程为r²-1=0(r+1)(r-1)=0r1=-1,r2=1所以通解为y=c1e^(-x)+c2e^x
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |