数学压轴题,求解析
已知:圆O的半径OA=5,弦AB=8,C是弦AB的中点,点P是射线AO上一点(与点A不重合),直线PC与射线BO交于点D,1,若点P在AO的延长线上,设OP=X,OD/D...
已知:圆O的半径OA=5,弦AB=8,C是弦AB的中点,点P是射线AO上一点(与点A不重合),直线PC与射线BO交于点D,
1,若点P在AO的延长线上,设OP=X,OD/DB=Y,求Y与X的解析式并写出定义域
2,连接CO,若三角形PCO与三角形PCA相似,求此时的BD
1
, 展开
1,若点P在AO的延长线上,设OP=X,OD/DB=Y,求Y与X的解析式并写出定义域
2,连接CO,若三角形PCO与三角形PCA相似,求此时的BD
1
, 展开
2个回答
展开全部
第一个问题:
过C作CE∥AO交BO于E。
∵CE∥AO、AC=BC,∴CE=AO/2=5/2、BE=EO=BO/2=5/2,
∴DE=EO-DO=5/2-DO。
∵CE∥OP,∴△CED∽△POD,∴CE/OP=DE/DO,∴(5/2)/x=(5/2-DO)/DO,
∴5/x=(5-2DO)/DO,∴5DO=5x-2xDO,∴(5+2x)DO=5x,∴DO=5x/(5+2x),
∴BD=BO-DO=5-5x/(5+2x)=(25+10x-5x)/(5+2x)=(25+5x)/(5+2x),
∴y=OD/DB=[5x/(5+2x)]/[(25+5x)/(5+2x)]=x/(5+x)。
∵P在AO的延长线上,∴OP>0,∴x>0,∴x∈(0,+∞)。
于是,满足条件的解析式为 y=x/(5+x),定义域为(0,+∞)。
第二个问题:
∵O是圆心、C是弦AB的中点,∴CO⊥AC,而AC=AB/2=8/2=4,
∴由勾股定理,有:CO=√(AO^2-AC^2)=√(25-16)=3。
∵△PCO∽△PCA,∴AC/CO=AP/CP=CP/OP。
由AC/CO=AP/CP,得:CP=CO×AP/AC; 由AC/CO=CP/OP,得:CP=AC×OP/CO,
∴CO×AP/AC=AC×OP/CO,∴3(5+x)/4=4x/3,∴9(5+x)=16x,
∴45+9x=16x,∴7x=45,∴x=45/7,
∴y=x/(5+x)=(45/7)/(5+45/7)=45/(35+45)=9/(7+9)=9/16,
∴OD/BD=9/16,∴(5-BD)/BD=9/16,∴5/BD-1=9/16,∴5/BD=1+9/16=25/16,
∴1/BD=5/16,∴BD=16/5。
过C作CE∥AO交BO于E。
∵CE∥AO、AC=BC,∴CE=AO/2=5/2、BE=EO=BO/2=5/2,
∴DE=EO-DO=5/2-DO。
∵CE∥OP,∴△CED∽△POD,∴CE/OP=DE/DO,∴(5/2)/x=(5/2-DO)/DO,
∴5/x=(5-2DO)/DO,∴5DO=5x-2xDO,∴(5+2x)DO=5x,∴DO=5x/(5+2x),
∴BD=BO-DO=5-5x/(5+2x)=(25+10x-5x)/(5+2x)=(25+5x)/(5+2x),
∴y=OD/DB=[5x/(5+2x)]/[(25+5x)/(5+2x)]=x/(5+x)。
∵P在AO的延长线上,∴OP>0,∴x>0,∴x∈(0,+∞)。
于是,满足条件的解析式为 y=x/(5+x),定义域为(0,+∞)。
第二个问题:
∵O是圆心、C是弦AB的中点,∴CO⊥AC,而AC=AB/2=8/2=4,
∴由勾股定理,有:CO=√(AO^2-AC^2)=√(25-16)=3。
∵△PCO∽△PCA,∴AC/CO=AP/CP=CP/OP。
由AC/CO=AP/CP,得:CP=CO×AP/AC; 由AC/CO=CP/OP,得:CP=AC×OP/CO,
∴CO×AP/AC=AC×OP/CO,∴3(5+x)/4=4x/3,∴9(5+x)=16x,
∴45+9x=16x,∴7x=45,∴x=45/7,
∴y=x/(5+x)=(45/7)/(5+45/7)=45/(35+45)=9/(7+9)=9/16,
∴OD/BD=9/16,∴(5-BD)/BD=9/16,∴5/BD-1=9/16,∴5/BD=1+9/16=25/16,
∴1/BD=5/16,∴BD=16/5。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询