点在圆上的切线公式什么

 我来答
穆子澈想我1997
2018-07-28 · TA获得超过44.3万个赞
知道小有建树答主
回答量:672
采纳率:100%
帮助的人:36.6万
展开全部

答案:设圆的方程为(x-a)²+(y-b)²=R²圆上有一点(x0,y0)则过这个点的切线为 (x-a)(x0-a)+(y-b)(y0-b)=R²

拓展资料:

切线长:路线交点至曲线起点或终点的直线距离。

圆的切线长:在经过圆外一点的切线,这一点和切点之间的线段叫做这点到圆的切线长。

解释:在图中BD和AD所在直线就是两条切线,而线段BD与线段AD就叫切线长。

过圆上的切线方程公式 :设圆的方程为(x-a)²+(y-b)²=R²圆上有一点(x0,y0),则过这个点的切线为 (x-a)(x0-a)+(y-b)(y0-b)=R²

切线长公式:过圆X²+Y²+DX+EY+F=0外一点M(a,b)引切线,切点为T,则IMTI的平方=a²+b²+Da+Eb+F.

参考资料:百度百科切线长

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户

2016-01-30
展开全部
切线方程

圆的切线方程:
  
[过圆外一点的2条切线]
过圆外一点的2条切线
若点P(x0,y0)在圆x^2+y^2+Dx+Ey+F=0上,则过点P的切线方程为x0x+y0y+D*(x+x0)/2+E*(y+y0)/2+F=0
  或表述为:
  若点P(x0,y0)在圆(x-a)^2+(y-b)^2=r^2上,则过点P的切线方程为(x-a)(x0-a)+(y-b)(y0-b)=r^2
[编辑本段]
关于圆的切线方程的证明:
  对于“若点P(x0,y0)在圆(x-a)^2+(y-b)^2=r^2上,则过点P的切线方程为(x-a)(x0-a)+(y-b)(y0-b)=r^2的证明”
  
1)简单易理解的是向量法证明

  设圆上一点A为(x0,y0),则该点与圆心O的向量OA=(x0-a,y0-b)
  因为过该点的切线与该方向半径垂直,则有切线方向上的单位向量与向量OA的点积为0.
  设直线上任意点B为(x,y)
  则直线方向上的向量AB=(x-x0,y-y0)
  AB●OA=(x-x0)(x0-a)+(y0-b)(y-y0)=0
  将(x-x0)(x0-a)+(y0-b)(y-y0)变形处理:
  原式
  =(x-a+a-x0)(x0-a)+(y0-b)(y-b+b-y0)
  =(x-a)(x0-a)+(y-b)(y0-b)-(x0-a)^2-(y0-b)^2
  将变形带入。
  (x-a)(x0-a)+(y-b)(y0-b)=(x0-a)^2+(y0-b)^2=r^2
  
2)思路简单但运算麻烦的解法,算斜率

  设圆上一点A为(x0,y0),则有:(x0-a)^2+(y0-b)^2=r^2
  对隐函数求导,则有:
  2(x0-a)dx+2(y0-b)dy=0
  dy/dx=(a-x0)/(y0-b)=k
  (隐函数求导法亦可证明椭圆的切线方程,方法雷同)
  或直接k1=(y0-b)/(x0-a); k*k1=-1;(k1为与切线垂直的半径斜率。)
  得k=(a-x0)/(y0-b) (以上处理是假设斜率存在,在后面讨论斜率不存在的情况)
  所以切线方程可写为:y=(a-x0)/(y0-b)x+B
  将点(x0,y0),可求出B=(x0-a)x0/(y0-b)+y0
  所以:
  y(y0-b)+(x0-a)x=(x0-a)x0+(y0-b)y0
  (y0-b)(y-b+b-y0)+(x0-a)(x-a+a-x0)=0
  (y0-b)(y-b)+(x0-a)(x-a)=(x0-a)^2+(y0-b)^2
  (y0-b)(y-b)+(x0-a)(x-a)=R^2
  当斜率不存在时,切点为与x轴平行的直线过圆心与圆的交点。
  此类切点有2个,不妨设为M(a-r,b);N(a+r,b)
  (y0-b)(y-b)+(x0-a)(x-a)=r^2
  将2点带入上式,亦成立。
  故得证。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
以我眼看世界
2018-07-19 · TA获得超过1万个赞
知道答主
回答量:19
采纳率:71%
帮助的人:1.9万
展开全部

设圆的方程为(x-a)²+(y-b)²=R²
圆上有一点(x0,y0)
则过这个点的切线为 (x-a)(x0-a)+(y-b)(y0-b)=R²

拓展资料:

性质定理

圆的切线垂直于经过切点的半径。

推论1:经过圆心且垂直于切线的直线必经过切点。

推论2:经过切点且垂直于切线的直线必经过圆心。

主要性质

线段DA垂直于直线AB(AD为直径)

(1)切线和圆只有一个公共点;

(2)切线和圆心的距离等于圆的半径;

(3)切线垂直于经过切点的半径;

(4)经过圆心垂直于切线的直线必过切点;

(5)经过切点垂直于切线的直线必过圆心;

(6)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

参考资料:百度百科,切线

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Kle1n
2017-11-29 · TA获得超过196个赞
知道答主
回答量:11
采纳率:0%
帮助的人:5139
引用生猛的软蛋的回答:
当切线斜率存在时,对圆方程两边求导、整理可得切线的斜率为-(x₁-a)/(y₁-b).
∵切线过(x₁,y₁),
∴切线为y-y₁=-(x₁-a)(x-x₁)/(y₁-b).//这里,+改为-
整理得(x-a)(x-x₁)+(y₁-b)(y-y₁)=0,①
而(x₁-a)²+(y₁-b)²=r²,②
①②两式整理得切线方程(x₁-a)(x-a)+(y₁-b)(y-b)=r².
当切线斜率不存在时,易证其方程仍满足上式.
展开全部
当切线斜率存在时,对圆方程两边求导、整理可得切线的斜率为-(x₁-a)/(y₁-b).
∵切线过(x₁,y₁),
∴切线为y-y₁=-(x₁-a)(x-x₁)/(y₁-b).//这里,+改为-
整理得(x-a)(x-x₁)+(y₁-b)(y-y₁)=0,①
而(x₁-a)²+(y₁-b)²=r²,②
①②两式整理得切线方程(x₁-a)(x-a)+(y₁-b)(y-b)=r².
当切线斜率不存在时,易证其方程仍满足上式.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2022-04-12 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1616万
展开全部

简单计算一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式