如图,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0),与y轴的交点为C,顶点为D。 30

1.求抛物线的表达式2.设该抛物线的对称轴为直线l,点C关于直线l的对称点为E,CE与直线l相交于点G。点P在直线l上,如果点D是△PCE的重心,求点P的坐标。3.在(2... 1.求抛物线的表达式
2.设该抛物线的对称轴为直线l,点C关于直线l的对称点为E,CE与直线l相交于点G。点P在直线l上,如果点D是△PCE的重心,求点P的坐标。
3.在(2)的条件下,将(1)所求得的抛物线沿y轴向上或向下平移后顶点为P,写出平移后的抛物线表达式。点M在平移后的抛物线上,且△MPD的面积等于△CPD面积的两倍,求M点的坐标
展开
心无明
2012-06-05 · TA获得超过458个赞
知道答主
回答量:95
采纳率:0%
帮助的人:32万
展开全部
(1)依题意有 -1+b+c=0 -9+3b+c=0 ,
∴b=4,c=-3,
∴抛物线解析式为y=-x2+4x-3;
(2)如图,设P(x,y)
∵AB=2,S△PAB=1
∴1 2 ×2×|y|=1
∴y=±1
当y=1时,x1=x2=2,
当y=-1时,x=2± 2 ,
∴满足条件的点P有三个坐标分别为(2,1),(2+ 2 ,-1),(2- 2 ,-1);

(3)存在.
过点C作抛物线的对称轴的对称点C',
∵点(0,-3),对称轴为x=2,
∴C′(4,-3),
设直线AC′的解析式为y=kx+b,
则 k+b=0 4k+b=-3 ,
∴k=-1,b=1,
∴直线AC′的解析式为y=-x+1,
直线AC′与对称轴x=2的交点为(2,-1),即M(2,-1),
∴存在点M(2,-1),可使△AMC的周长最小.
更多追问追答
追问
不太对把,好像错了题了
追答
刚做过,我照着老师给的提纲写的
遇见丶最美
2012-06-02
知道答主
回答量:67
采纳率:0%
帮助的人:14.7万
展开全部
抛物线的方程-( x*x-4x+3)=0 E的坐标(4,-3)D这个不知道是哪里来的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
钱钱钱钱8
2012-06-16
知道答主
回答量:1
采纳率:0%
帮助的人:1619
展开全部
1.把a.b带入解析式就的出来了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式