函数y=(x^2-4x+3)/(2x^2-x-1)的值域
1个回答
展开全部
y=(x^2-4x+3)/(2x^2-x-1)
=(x-1)(x-3)/[(2x+1)(x-1)]
=(x-3)/(2x+1)
=(1/2)(2x+1-7)/(2x+1)
=1/2-7/(4x+2)
定义域
(-∞,-1/2)
(-1/2,1)
(1,∞)
分段求极限,得到:
x→-∞时,y→1/2.
x→-1/2时,y→-∞
x→1时,y→-2/3;
x→∞时,y→1/2.
所以,y=(x^2-4x+3)/(2x^2-x-1)的值域是:
(-∞,1/2),且
y
≠
-2/3
。
=(x-1)(x-3)/[(2x+1)(x-1)]
=(x-3)/(2x+1)
=(1/2)(2x+1-7)/(2x+1)
=1/2-7/(4x+2)
定义域
(-∞,-1/2)
(-1/2,1)
(1,∞)
分段求极限,得到:
x→-∞时,y→1/2.
x→-1/2时,y→-∞
x→1时,y→-2/3;
x→∞时,y→1/2.
所以,y=(x^2-4x+3)/(2x^2-x-1)的值域是:
(-∞,1/2),且
y
≠
-2/3
。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询