在直角三角形ABC中,角ACB等于90度,CD垂直AB,垂足为D,AF平分角CAB,交CD于E,交CB于F.将三角形ADE沿AB向右平移

到三角形A'D'F'的位置,使点E'落在BC边上,其它条件不变,问:BE'CF有怎样的数量关系?... 到三角形A'D'F'的位置,使点E'落在BC边上,其它条件不变,问:BE 'CF有怎样的数量关系? 展开
自诩冰凌儿
2013-03-13
知道答主
回答量:37
采纳率:0%
帮助的人:17.2万
展开全部

(1)根据平分线的定义可知∠CAF=∠EAD,再根据已知条件以及等量代换即可证明CE=CF,

(2)根据题意作辅助线过点E作EG⊥AC于G,根据平移的性质得出D′E′=DE,再根据已知条件判断出△CEG≌△BE′D′,可知CE=BE′,再根据等量代换可知BE′=CF.

(1)证明:∵AF平分∠CAB,

∴∠CAF=∠EAD,

∵∠ACB=90°,

∴∠CAF+∠CFA=90°,

∵CD⊥AB于D,

∴∠EAD+AED=90°,

∴∠CFA=∠AED,

∵∠AED=∠CEF,

∴∠CFA=∠CEF,

∴CE=CF;

(2)BE′=CF.

证明:如图,过点E作EG⊥AC于G,

又∵AF平分∠CAB,ED⊥AB,

∴ED=EG.

由平移的性质可知:D′E′=DE,

∴D′E′=GE,

∵∠ACB=90°,

∴∠ACD+∠DCB=90°

∵CD⊥AB于D,

∴∠B+∠DCB=90°,

∴∠ACD=∠B,

在Rt△CEG与Rt△BE′D′中, ,

∴△CEG≌△BE′D′,

∴CE=BE′,

由(1)可知CE=CF,

∴BE′=CF.


 

参考资料: http://zhidao.baidu.com/question/360203679.html

不懂扑通影视
推荐于2017-11-25 · TA获得超过803个赞
知道答主
回答量:278
采纳率:100%
帮助的人:93.1万
展开全部
(1)根据平分线的定义可知∠CAF=∠EAD,再根据已知条件以及等量代换即可证明CE=CF,
(2)根据题意作辅助线过点E作EG⊥AC于G,根据平移的性质得出D′E′=DE,再根据已知条件判断出△CEG≌△BE′D′,可知CE=BE′,再根据等量代换可知BE′=CF.
(1)证明:∵AF平分∠CAB,
∴∠CAF=∠EAD,
∵∠ACB=90°,
∴∠CAF+∠CFA=90°,
∵CD⊥AB于D,
∴∠EAD+AED=90°,
∴∠CFA=∠AED,
∵∠AED=∠CEF,
∴∠CFA=∠CEF,
∴CE=CF;
(2)BE′=CF.
证明:如图,过点E作EG⊥AC于G,
又∵AF平分∠CAB,ED⊥AB,
∴ED=EG.
由平移的性质可知:D′E′=DE,
∴D′E′=GE,
∵∠ACB=90°,
∴∠ACD+∠DCB=90°
∵CD⊥AB于D,
∴∠B+∠DCB=90°,
∴∠ACD=∠B,
在Rt△CEG与Rt△BE′D′中, ,
∴△CEG≌△BE′D′,
∴CE=BE′,
由(1)可知CE=CF,
∴BE′=CF.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
乐橙味早茶
2013-06-21 · TA获得超过377个赞
知道答主
回答量:70
采纳率:0%
帮助的人:36.6万
展开全部
(1)根据平分线的定义可知∠CAF=∠EAD,再根据已知条件以及等量代换即可证明CE=CF,
(2)根据题意作辅助线过点E作EG⊥AC于G,根据平移的性质得出D′E′=DE,再根据已知条件判断出△CEG≌△BE′D′,可知CE=BE′,再根据等量代换可知BE′=CF.
(1)证明:∵AF平分∠CAB,
∴∠CAF=∠EAD,
∵∠ACB=90°,
∴∠CAF ∠CFA=90°,
∵CD⊥AB于D,
∴∠EAD AED=90°,
∴∠CFA=∠AED,
∵∠AED=∠CEF,
∴∠CFA=∠CEF,
∴CE=CF;

(2)BE′=CF.
证明:如图,过点E作EG⊥AC于G,
又∵AF平分∠CAB,ED⊥AB,
∴ED=EG.
由平移的性质可知:D′E′=DE,
∴D′E′=GE,
∵∠ACB=90°,
∴∠ACD ∠DCB=90°
∵CD⊥AB于D,
∴∠B ∠DCB=90°,
∴∠ACD=∠B,
在Rt△CEG与Rt△BE′D′中, ,
∴△CEG≌△BE′D′,
∴CE=BE′,
由(1)可知CE=CF,
∴BE′=CF.
本题主要考查了平分线的定义,平移的性质以及全等三角形的判定与性质,难度适中.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式