(2012?石景山区一模)如图,在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的
(2012?石景山区一模)如图,在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连接EF、EC、BF、CF.(1)...
(2012?石景山区一模)如图,在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连接EF、EC、BF、CF. (1)四边形AECD的形状是______;(2)若CD=2,求CF的长.
展开
1个回答
展开全部
(1)四边形AECD的形状是平行四边形,理由为:
∵E为AB的中点,
∴AE=EB=
AB,又AB=2CD,即CD=
AB,
∴DC=AE,又DC∥AE,
∴四边形AECD为平行四边形;
(2)∵四边形AECD是平行四边形,且CD=2,
∴AE=CD=2,
∵E是AB的中点,
∴AE=EB=2,AB=2CD=4,
∵四边形AECD是平行四边形,
∴EC∥AD,EC=AD,又∠A=60°,
∴∠BEC=∠A=60°,
又∵AB⊥BC,
∴∠EBC=90°,
在Rt△EBC中,∠ECB=90°-60°=30°,EB=2,
∴EC=2EB=4,
∴BC=
=2
,
∴AD=EC=4,…(3分)
∵F是AD的中点,
∴AF=2,
又∵AE=2,∠A=60°,
∴△AEF是等边三角形,
∴EF=2,∠AEF=60°,
又∵∠CEB=60°,
∴∠FEC=180°-(∠AEF+∠CEB)=60°,
在△ECF和△ECB中,
∵
,
∴△ECF≌△ECB(SAS),
∴FC=BC=2
.
故答案为:平行四边形.
∵E为AB的中点,
∴AE=EB=
1 |
2 |
1 |
2 |
∴DC=AE,又DC∥AE,
∴四边形AECD为平行四边形;
(2)∵四边形AECD是平行四边形,且CD=2,
∴AE=CD=2,
∵E是AB的中点,
∴AE=EB=2,AB=2CD=4,
∵四边形AECD是平行四边形,
∴EC∥AD,EC=AD,又∠A=60°,
∴∠BEC=∠A=60°,
又∵AB⊥BC,
∴∠EBC=90°,
在Rt△EBC中,∠ECB=90°-60°=30°,EB=2,
∴EC=2EB=4,
∴BC=
EC2?EB2 |
3 |
∴AD=EC=4,…(3分)
∵F是AD的中点,
∴AF=2,
又∵AE=2,∠A=60°,
∴△AEF是等边三角形,
∴EF=2,∠AEF=60°,
又∵∠CEB=60°,
∴∠FEC=180°-(∠AEF+∠CEB)=60°,
在△ECF和△ECB中,
∵
|
∴△ECF≌△ECB(SAS),
∴FC=BC=2
3 |
故答案为:平行四边形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询