关于二重积分积分区域关于y=x对称的性质?
1个回答
展开全部
计算积分区域关于直线 y=x 对称的二重积分
积分区域关于y=x对称的二重积分常可以这样计算
1.积分区域D关于直线y=x对称,则
(1) {D区域} ∫∫f(x,y)dxdy = {D1区域}∫∫f(x,y)dxdy, 当f(y,x) = f(x,y)
= 0 ,当f(y,x) = -f(x,y)
其中D1={(x,y)|(x,y)∈D,y≥x) 也可换为 D2={(x,y)|(x,y)∈D,y≤x};
(2) {D区域} ∫∫f(x,y)dσ = {D区域}∫∫f(y,x)dσ
这是二重积分的特殊性质,非常有用。该性质表明,当积分区域D关于直线y=x对称时,二重积分中被积函数的两个变量可以互换位置,常称有此性质的D具有关于积分变量的对称性。
积分区域关于y=x对称的二重积分常可以这样计算
1.积分区域D关于直线y=x对称,则
(1) {D区域} ∫∫f(x,y)dxdy = {D1区域}∫∫f(x,y)dxdy, 当f(y,x) = f(x,y)
= 0 ,当f(y,x) = -f(x,y)
其中D1={(x,y)|(x,y)∈D,y≥x) 也可换为 D2={(x,y)|(x,y)∈D,y≤x};
(2) {D区域} ∫∫f(x,y)dσ = {D区域}∫∫f(y,x)dσ
这是二重积分的特殊性质,非常有用。该性质表明,当积分区域D关于直线y=x对称时,二重积分中被积函数的两个变量可以互换位置,常称有此性质的D具有关于积分变量的对称性。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询