(2010?扬州二模)如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE

(2010?扬州二模)如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,... (2010?扬州二模)如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形? 展开
 我来答
顺利且刻苦的画眉鸟4197
2014-10-10 · TA获得超过148个赞
知道答主
回答量:196
采纳率:0%
帮助的人:67.8万
展开全部
(1)证明:连接OD,BD.
∵D是圆上一点
∴∠ADB=90°,∠BDC=90°
则△BDC是Rt△,且已知E为BC中点,
∴∠EDB=∠EBD.
又∵OD=OB且∠EBD+∠DBO=90°,
∴∠EDB+∠ODB=90°.
∴DE是⊙O的切线.

(2)解:连接OD,BD,AE,OE,
∵∠EDO=∠ABC=90°,
若要AOED是平行四边形,则DE∥AB,D为AC中点
又∵BD⊥AC,
∴△ABC为等腰直角三角形,
∴∠CAB=45°,
所以当∠CAB为45°时,四边形AOED是平行四边形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式