已知点P是椭圆x2a2+y2b2=1(a>b>0,xy≠0)上的动点,F1(-c,0)、F2(c,0)为椭圆的左、右焦点,O为
已知点P是椭圆x2a2+y2b2=1(a>b>0,xy≠0)上的动点,F1(-c,0)、F2(c,0)为椭圆的左、右焦点,O为坐标原点,若M是∠F1PF2的角平分线上的一...
已知点P是椭圆x2a2+y2b2=1(a>b>0,xy≠0)上的动点,F1(-c,0)、F2(c,0)为椭圆的左、右焦点,O为坐标原点,若M是∠F1PF2的角平分线上的一点,且F1M⊥MP,则|OM|的取值范围是( )A.(0,c)B.(0,a)C.(b,a)D.(c,a)
展开
展开全部
解:如图,延长PF2,F1M,交与N点,∵PM是∠F1PF2平分线,且F1M⊥MP,
∴|PN|=|PF1|,M为F1F2中点,
连接OM,∵O为F1F2中点,M为F1N中点
∴|OM|=
|F2N|=
||PN|-|PF2||=
||PF1|-|PF2||
∵在椭圆
+
=1(a>b>0,xy≠0)中,设P点坐标为(x0,y0)
则|PF1|=a+ex0,|PF2|=a-ex0,
∴||PF1|-|PF2||=|a+ex0-a+ex0|=|2ex0|=|x0|
∵P点在椭圆
+
=1(a>b>0,xy≠0)上,
∴|x0|∈(0,a],
又∵当|x0|=a时,F1M⊥MP不成立,∴|x0|∈(0,a)
∴|OM|∈(0,c).
故选A.
∴|PN|=|PF1|,M为F1F2中点,
连接OM,∵O为F1F2中点,M为F1N中点
∴|OM|=
1 |
2 |
1 |
2 |
1 |
2 |
∵在椭圆
x2 |
a2 |
y2 |
b2 |
则|PF1|=a+ex0,|PF2|=a-ex0,
∴||PF1|-|PF2||=|a+ex0-a+ex0|=|2ex0|=|x0|
∵P点在椭圆
x2 |
a2 |
y2 |
b2 |
∴|x0|∈(0,a],
又∵当|x0|=a时,F1M⊥MP不成立,∴|x0|∈(0,a)
∴|OM|∈(0,c).
故选A.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询