已知点P是椭圆x2a2+y2b2=1(a>b>0,xy≠0)上的动点,F1(-c,0)、F2(c,0)为椭圆的左、右焦点,O为

已知点P是椭圆x2a2+y2b2=1(a>b>0,xy≠0)上的动点,F1(-c,0)、F2(c,0)为椭圆的左、右焦点,O为坐标原点,若M是∠F1PF2的角平分线上的一... 已知点P是椭圆x2a2+y2b2=1(a>b>0,xy≠0)上的动点,F1(-c,0)、F2(c,0)为椭圆的左、右焦点,O为坐标原点,若M是∠F1PF2的角平分线上的一点,且F1M⊥MP,则|OM|的取值范围是(  )A.(0,c)B.(0,a)C.(b,a)D.(c,a) 展开
 我来答
占高uN
2014-08-24 · 超过55用户采纳过TA的回答
知道答主
回答量:112
采纳率:100%
帮助的人:142万
展开全部
解:如图,延长PF2,F1M,交与N点,∵PM是∠F1PF2平分线,且F1M⊥MP,
∴|PN|=|PF1|,M为F1F2中点,
连接OM,∵O为F1F2中点,M为F1N中点
∴|OM|=
1
2
|F2N|=
1
2
||PN|-|PF2||=
1
2
||PF1|-|PF2||
∵在椭圆
x2
a2
+
y2
b2
=1(a>b>0,xy≠0)
中,设P点坐标为(x0,y0
则|PF1|=a+ex0,|PF2|=a-ex0
∴||PF1|-|PF2||=|a+ex0-a+ex0|=|2ex0|=|x0|
∵P点在椭圆
x2
a2
+
y2
b2
=1(a>b>0,xy≠0)
上,
∴|x0|∈(0,a],
又∵当|x0|=a时,F1M⊥MP不成立,∴|x0|∈(0,a)
∴|OM|∈(0,c).
故选A.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式