已知f(x)=4x+ax2?23x3(x∈R)在区间[-1,1]上是增函数.(Ⅰ)求实数a的值组成的集合A;(Ⅱ)设关于x的

已知f(x)=4x+ax2?23x3(x∈R)在区间[-1,1]上是增函数.(Ⅰ)求实数a的值组成的集合A;(Ⅱ)设关于x的方程f(x)=2x+13x3的两个非零实根为x... 已知f(x)=4x+ax2?23x3(x∈R)在区间[-1,1]上是增函数.(Ⅰ)求实数a的值组成的集合A;(Ⅱ)设关于x的方程f(x)=2x+13x3的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由. 展开
 我来答
手机用户49072
推荐于2016-04-08 · TA获得超过247个赞
知道答主
回答量:101
采纳率:0%
帮助的人:125万
展开全部
(Ⅰ)f'(x)=4+2ax-2x2,∵f(x)在[-1,1]上是增函数,
∴f'(x)≥0对x∈[-1,1]恒成立,
即x2-ax-2≤0对x∈[-1,1]恒成立.①
设φ(x)=x2-ax-2,
①?
φ(1)=1?a?2≤0
φ(?1)=1+a?2≤0
?-1≤a≤1,
∵对x∈[-1,1],只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0
∴A={a|-1≤a≤1}.

(Ⅱ)由4x+ax2?
2
3
x3=2x+
1
3
x3
,得x=0,或x2-ax-2=0,
∵△=a2+8>0
∴x1,x2是方程x2-ax-2=0的两非零实根,x1+x2=a,x1x2=-2,
从而|x1-x2|=
(x1+x2)2?4x1x2
a2+8

∵-1≤a≤1,∴|x1-x2|=
a2+8
≤3.
要使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,
当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立,
即m2+tm-2≥0对任意t∈[-1,1]恒成立.②
设g(t)=m2+tm-2=mt+(m2-2),
②?g(-1)=m2-m-2≥0且g(1)=m2+m-2≥0,
?m≥2或m≤-2.
所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,
其取值范围是{m|m≥2,或m≤-2}.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式