3个回答
展开全部
作DF⊥BE,垂足为F
因为三角形ABC为等边三角形
所以∠ABC=∠BCD=60°
因为CD=CE
所以∠E=∠CDE
而∠BCD=∠E+∠CDE=60°
所以∠E=∠BCD/2=30°
因为BD是AC边的中线,且三角形ABC为等边三角形
所以BD平分∠ABC
所以∠CBD=30°
所以∠CBD=∠E
所以三角形BDE为等腰三角形
因为DF⊥BE
所以BF=EF
DF为BE的垂直平分线
所以点D在线段BE的垂直平分线上
另外证法:
∵△ABC为等边三角形
∴∠BCA=60°
又∵CD=CE
∴∠CED=∠CDE
∵∠CED+∠CDE=∠BCA=60°
∴∠CED=30°
又∵CD=AD,BC=BA
∴BD平分∠CBA
又∵∠CBA=60°
∴∠CBD=∠CED=30°
即△BDE为等腰三角形
∴点D在BC的垂直平分线上
因为三角形ABC为等边三角形
所以∠ABC=∠BCD=60°
因为CD=CE
所以∠E=∠CDE
而∠BCD=∠E+∠CDE=60°
所以∠E=∠BCD/2=30°
因为BD是AC边的中线,且三角形ABC为等边三角形
所以BD平分∠ABC
所以∠CBD=30°
所以∠CBD=∠E
所以三角形BDE为等腰三角形
因为DF⊥BE
所以BF=EF
DF为BE的垂直平分线
所以点D在线段BE的垂直平分线上
另外证法:
∵△ABC为等边三角形
∴∠BCA=60°
又∵CD=CE
∴∠CED=∠CDE
∵∠CED+∠CDE=∠BCA=60°
∴∠CED=30°
又∵CD=AD,BC=BA
∴BD平分∠CBA
又∵∠CBA=60°
∴∠CBD=∠CED=30°
即△BDE为等腰三角形
∴点D在BC的垂直平分线上
展开全部
证明:
∵△ABC是正三角形
∴∠ACB = 60°
∵CE = CD
∴∠E = ∠EDC = 30°
∵BD是中线
∴BD也是角平分线
∴∠DBC = 30°
∴△BCD是等腰三角形,且D为顶点
所以D在线段BE的中垂线上
∵△ABC是正三角形
∴∠ACB = 60°
∵CE = CD
∴∠E = ∠EDC = 30°
∵BD是中线
∴BD也是角平分线
∴∠DBC = 30°
∴△BCD是等腰三角形,且D为顶点
所以D在线段BE的中垂线上
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询