如图,点B在MN上,过AB的中点O作MN的平行线,分别交∠ABM的平分线和∠ABN的平分线于点C,
证明:∵CD平行MN,
∴∠OCB=∠CBM,
∵BC平分∠ABM,
∴∠OBC=∠CBM,
∴∠OCB=∠OBC,
∴OC=OB,
同理可证:OB=OD,
∴OA=OB=OC=OD,
∵CD=OC+OD
∴AB=CD,
∴四边形ACBD是矩形(对角线互相平分且相等四边形是矩形).
扩展资料:
边角关系
三角函数给出了直角三角形中边和角的关系,可以用来解三角形。
三角函数是数学中属于初等函数中超越函数的一类。
全等三角形
定义
两个能够完全重合的三角形称为全等三角形。
特点
全等三角形的对应角相等,对应边也相等。翻折,平移,旋转,多种变换叠加后仍全等。 [3]
判定
1、两个三角形对应的三条边相等,两个三角形全等,简称“边边边”或“SSS";
2、两个三角形对应的两边及其夹角相等,两个三角形全等,简称“边角边”或“SAS”;
3、两个三角形对应的两角及其夹边相等,两个三角形全等,简称“角边角”或“ASA”;
4、两个三角形对应的两角及其一角的对边相等,两个三角形全等,简称“角角边”或“AAS”;
5、两个直角三角形对应的一条斜边和一条直角边相等,两个直角三角形全等,简称“斜边、直角边”或“HL”;
注:“边边角”即“SSA”和“角角角”即:"AAA"是错误的证明方法。
相似三角形
定义
对应边成比例的两个三角形叫做相似三角形。
特点
1、相似三角形对应边成比例,对应角相等。
2、相似三角形对应边的比叫做相似比。
3、相似三角形的周长比等于相似比,面积比等于相似比的平方。
4、相似三角形对应线段(角平分线、中线、高)之比等于相似比。
判定
1、如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简称:三边对应成比例的两个三角形相似)。
2、如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简称:两边对应成比例且其夹角相等的两三角形相似)。
3、如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似(简称:两角对应相等的两三角形相似)。
4、如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个三角形相似。
参考资料:百度百科——三角形