数学问题,极限和导数的区别…(涉及连续、可导,有极限之间的关系) 30

春秋与绽放
2012-06-07 · 超过14用户采纳过TA的回答
知道答主
回答量:78
采纳率:0%
帮助的人:40.2万
展开全部
导函数简称导数,极限是导数的前提.
首先,导数的产生是从求曲线的切线这一问题而产生的,因此利用导数可以求曲线在任意一点的切线的斜率。
其次,利用导数可以解决某些不定式极限(就是指0/0、无穷大/无穷大等等类型的式子),这种方法叫作“洛比达法则”。
然后,我们可以利用导数,把一个函数近似的转化成另一个多项式函数,即把函数转化成a0+a1(x-a)+a2(x-a)^2+……+an(x-a)^n,这种多项式叫作“泰勒多项式”,可以用于近似计算、误差估计,也可以用于求函数的极限。
另外,利用函数的导数、二阶导数,可以求得函数的形态,例如函数的单调性、凸性、极值、拐点等。
最后,利用导数可以解决某些物理问题,例如瞬时速度v(t)就是路程关于时间函数的导数,而加而加速度又是速度关于时间的导数。而且,在经济学中,导数也有着特殊的意义
Devil丶seven
2012-06-07
知道答主
回答量:29
采纳率:0%
帮助的人:19.9万
展开全部
连续是在该处有极限且极限值等于该处函数值 可导指该处斜率存在 有极限是该处左极限等于右极限 连续是有极限的充分不必要条件 有极限与可导好像没有直接关系
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
已静心静意S
2012-06-07
知道答主
回答量:12
采纳率:0%
帮助的人:1.9万
展开全部
连续一定可导,可导不一定连续
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式