为什么三角形周长一定,三边相等时面积最大

 我来答
天罗网17
2022-09-15 · TA获得超过6197个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:73.5万
展开全部
若三角形的三条边长分别为a,b,c,则该三角形的面积为:
S=根号[p·(p-a)·(p-b)·(p-c)],其中p为半周长,p=1/2(a+b+c)
这个公式叫海伦公式.有了这个公式,原题的证明就不困难了.
设三角形的周长为a+b+c=2p
则S^2=p·[(p-a)·(p-b)·(p-c)≤p·{[(p-a)+(p-b)+(p-c)]/3}^3(用了“三个正数的算术平均数不小于他们的几何平均数”结论)
∴ S^2≤p^4/27
∴ S≤(根号3/9)·p^2
当且仅当p-a=p-b=p-c,即a=b=c,三角形为等边三角形时,面积取得最大值.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式