已知数列an满足 2anan-1=an-1-an,a1=3求a2 a3 a4

 我来答
华源网络
2022-08-01 · TA获得超过5581个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:145万
展开全部
2a(n)a(n-1)=a(n-1)-a(n)
两边同时除以a(n)a(n-1),得:
2=[1/a(n)]-[1/a(n)]
即:
[1/a(n)]-[1/(a-1)]=2=常数
即:数列{1/a(n)]是以1/a1为首项、以d=2为公差的等差枯早数列,得:
1/没慎雀a(n)=[1/a1]+2(n-1) 【这个是数列{a(n)}的通项公式】
因:孝早a1=3
则:
1/a(n)=(1/3)+2n-2=2n-(5/3)=(6n-5)/3
得:
a(n)=3/(6n-5)
则:
a2=3/7、a3=3/13、a4=3/19
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式