证明二元函数z=f(x,y) =xy/x^2+y^2 x,y≠0 =0 x,y=0 在(0,0)的偏导存在,但是不连续。
展开全部
证明:因为当(x,y)→(0,0)时,lim(f(x,0)-f(0,0))/x=0,lim(f(0,y)-f(0,0))/y=0
所以函数z的两个偏导数存在。
取y=kx,当(x,y)=(x,kx)→(0,0)时,
limf(x,y)=lim(kx^2)/(x^2+k^2x^2)=lim(k/(1+k^2)=k/(1+k^20)
随着k的不同,上述值不同,与极限唯一矛盾,故极限不存在。
所以函数z的两个偏导数存在。
取y=kx,当(x,y)=(x,kx)→(0,0)时,
limf(x,y)=lim(kx^2)/(x^2+k^2x^2)=lim(k/(1+k^2)=k/(1+k^20)
随着k的不同,上述值不同,与极限唯一矛盾,故极限不存在。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询