设点p在曲线y=1/2(e^x)上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为

答案(1-ln2)√2... 答案 (1-ln2)√2 展开
zqs626290
2012-06-11 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.6万
采纳率:66%
帮助的人:6053万
展开全部
【注:一个结论:
设P, Q是两条不相交的曲线上的两个动点..
当两条曲线的过这两点的法线重合时,|PQ|最小。】】
解:
可设P(a, (e^a)/2,) Q(b, ln(2b))
易知:
曲线y=(e^x)/2在点P处的法线方程为:y=[-2/(e^a)]x+[2a/(e^a)]+[(e^a)/2]
曲线y=ln(2x)在点Q处的法线方程为:y=-cx+c²+ln(2c).
由上面结论,对比可得:
c=2/(e^a)
c²+ln(2c)=[2a/(e^a)]+[(e^a)/2]
解得: c=1, a=ln2
∴P(ln2, 1), Q(1,ln2)
∴|PQ|min=√[(1-ln2)²+(1-ln2)²]=(1-ln2)√2.
昊天柠檬
2012-06-12
知道答主
回答量:1
采纳率:0%
帮助的人:2.8万
展开全部
两条曲线互为反函数 也就是说关于y=x对称,做两条曲线的切线且平行于y=x,两切线的距离即最小值。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
LHFday
2012-08-04
知道答主
回答量:20
采纳率:0%
帮助的人:3.2万
展开全部
两条曲线互为反函数 也就是说关于y=x对称,做两条曲线的切线且平行于y=x,两切线的距离即最小值。
曲线y=1/2(e^x)到y=x的距离为d=|1/2(e^x)|/根号2
设函数g(x)=1/2(e^x)-x 求导为1/2(e^x)-1
则g(x)最小值为1-ln2)√2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式