数与代数知识整理

关于6年级期末复习中第一部分《数与代数》的整理至少10点,急!... 关于6年级期末复习中第一部分《数与代数》的整理至少10点,急! 展开
873287463
2012-06-13 · TA获得超过4672个赞
知道小有建树答主
回答量:727
采纳率:100%
帮助的人:547万
展开全部
数与代数知识点
与数有关的公式:1、被除数÷除数=商 2、乘数×乘数=积 3、被减数-减数=差 4、加数+加数=和

知识点一:整数
1、整数的范围
整数包括自然数和负整数,或者说整数由正整数、零、负整数组成。
(1)自然数
自然数的意义:我们在数物体的时候,用来表示物体的个数0,1,2,3,4,5,…..叫做自然数。自然数的个数是无限的,没有最大的自然数。
“0”的含义:“0”表示一个物体也没有,在计数中起占位作用,表示该数位上没有计数单位。“0”还可以表示起点、分界点等。“0”是最小的自然数。
(2)正数
正数的定义 以前学过的8、16、200……..这样的数叫做正数。
正数的写法和读法 正数前面也可以加“+”号,例如:+8读作:正八。“+”号一般可以省略不写。
(3)负数
负数的定义 像-1、-5、-132……这样的数叫做负数。“一”叫负号。
负数的写法和读法 负数前面加“一”号,例如:-15读作:负十五。数字越大的负数反而越小。
“0”既不是正数,也不是负数。
(4)整数与自然数的联系及区别
自然数全是整数,整数不全是自然数,还包括负整数。
知识点二:百分数
1、百分数的意义
(1)分母是100的分数叫做百分数。
(2)表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率。
百分数应用题知识点归纳:
1、 求常见的百分率 如:达标率、及格率、成活率、发芽率、出勤率等 。
求百分率就是求一个数是另一个数的百分之几
2、 求一个数比另一个数多(或少)百分之几 实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几 (甲-乙)÷乙
求乙比甲少百分之几 (甲-乙)÷甲
3、 求一个数的百分之几是多少 一个数(单位“1”) ×百分率
4、 已知一个数的百分之几是多少,求这个数 部分量÷百分率=一个数(单位“1”)
5、 折扣 几折就是十分之几也就是百分之几十。
6、 利率 存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
利息=本金×利率×时间
百分数通常不写成分数形式,而采用符号“%”来表示,叫做百分号。

知识点二 :小数
1、小数的意义
把整数“1”平均分成10份,100份,1000份……这样的1份或几份是十分之几,百分之几,千分之几…….可以用小数来表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…….
2、小数大小的比较
比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就在;十分位上的数也相同的,百分位上的数大的那个数就大……
3、数的改写与求近似数
数的改写与省略这个数某一位后面的尾数写成近似数的方法
为了读写方便,常把较大的数简写成用“万”或“亿”作单位的数。如:2365500=236.55万(改写用“万”作单位的数)。有时还可以根据需要,省略这个数某一的尾数,写成近似数。如:2365500≈237万(省略万位后面的尾数),有时还要求保留一位小数的近似数。如:7.62983≈7.6(保留一位小数)。
取近似数时,常用“四舍五入法”或“进一法”、“去尾法”把一个数某一位后面的尾数省略。
知识点三 :分数
1、分数的意义 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
2、分数单位 把单位“1”平均分成若干份,表示其中一份的分数,叫做分数单位。
3、分数的分类
(1)真分数 分子比分母小的分数叫做真分数。
(2)假分数 分子比分母大或者与分母相等的分数叫做假分数。
4、分数的基本性质 分数的分子一分母同时乘或除以一个相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
5、分数与除法的关系 (1)分数的分子相当于除法的被除数,分数的分母相当于除法的除数,分数线相当于除法的除号。(2)在除法中,除数不能为0,在分数中分母也不能为0,除数、分母为0没有意义。
6、约分 把一个分数化成同它相等,且分子、分母都比较小的分数的过程,叫做约分。
7、最简分数 分子、分母是互质数的分数叫做最简分数。
8、通分 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
9、分数大小的比较 分母相同的两个分数,分子大的分数比较大;分子相同的两个分数,分母小的分数比较大。
10、分数化小数 根据分数与除法的关系,把分数转化为除法算式,然后计算,就可以得到小数。
11、小数化为分数 原来有几位小数,就在1的的后面写上几个0。
12、分数的基本性质与小数基本性质的关系
分数的基本性质与小数的基本性质是一致的。小数的末尾添上“0”
或者去掉“0”,就相当于把相应的分数的分子、分母同时扩大(或缩小)到原来的10倍(或 )、100倍(或 )、1000倍(或 )……
百度网友7630260
2012-06-14
知道答主
回答量:17
采纳率:0%
帮助的人:11.2万
展开全部
一、 知识整理。
1、 数与代数
知识点一 整数
1、整数的定义:像-3,-2,-1,0,1,2……这样的数称为整数。在整数中大于零的数称为正整数,小于零的数称为负整数。正整数、零与负整数统称为整数。
2、整数的范围:除自然数外,整数还包括负整数。但在小学阶段里,整数通常指的是自然数。
3、读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续有几个0都只读一个零。
4、写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
知识点二 自然数
1、自然数的定义:我们在数物体的时候,用来表示物体个数的0,1,2,3,……叫作自然数。
2、自然数的基本单位:任何非“0”的自然数都是由若干个“1”组成,所以“1”是自然数的基本单位。
3、“0”的含义:一个物体也没有,用“0”表示,但并不是说“0”只表示没有物体,它还有多方面的含义。
知识点三比较整数大小的方法。
1、数位不同的正整数的比较方法:如果位数不同,那么位数多的数就大。
2、数位相同的正整数的比较方法:如果位数相同,左起第一位上数大的那个数就大;如果左起第一位上的数相同,就比较左起第二位上的数。依次类推直到比较出数的大小。
知识点四整数的改写。
把大数改写成用“万”或“亿”作单位的数:一个比较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
改写有两种情况:一种是把较大的多位数直接改写成用“万”或“亿”作单位的数,不满万、亿的尾数直接改写成小数;另一种是根据需要省略万位或亿位的尾数,把原来的多位数按照“四舍五入”法写成它的近似数。
知识点五倍数和因数。
1、倍数和因数的定义:自然数a(a≠0)乘自然数b(b≠0),所得的积c就是a和b的倍数,a和b就是c的因数。
2、倍数的特征:一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
3、因数的特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
知识点六最大公因数、最小公倍数和互质数。
1、最大公因数的定义:几个数公有的因数,叫作这几个数的最大公因数;其中最大的一个,叫作这几个数的最大公因数。
2、最小公倍数的定义:几个数公有的倍数,叫作这几个数的公倍数,其中最小的一个,叫作这几个数的最小公倍数。
3、互质数:公因数只有1的两个数,叫作互质数。
知识点七2、3、5倍数的特征。
1、2的倍数的特征:个位上是0、2、4、6、8 的数是2的倍数。
2、5的倍数的特征:个位上是0或者5的数是5的倍数。
3、3的倍数的特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
4、同时是2、5、3的倍数的特征:一个数各个数位上的数字的和是3的倍数,且个位上是0,这个数一定同时是2、5、3 的倍数。
知识点八奇数、偶数。
1、奇数:不是2的倍数的数叫作奇数。
2、偶数:是2的倍数的数叫偶数。
3、数的奇偶性:(1)两个相同性质的数(都是偶数或都是奇数)相加减,结果都是偶数。(2)两个不同性质的数(一个是奇数,另一个是偶数)相加减,结果是奇数。
知识点九质数、合数
1、质数的含义:一个数只有1和它本身两个因数,这样的数叫作质数(或素数)
2、合数的含义:一个数除了1和它本身以外还有别的因数,这样的数叫作合数。
3、判断一个数是质数还是合数的方法:(1)只有两个因数的数一定是质数,有3个或3个以上因数的数是合数。(2)个位上是0、2、4、6、8和5的数(除了2和5)一定不是质数,质数个位上的数字只能是1、3、7和9(2和5外)
知识点十整数、负数
1、负数的定义:像-1,-2,-15…这样的数叫作负数。“-”叫负号,读作:负。
2、正数的定义:以前学过的8,16,200…这样的数叫作正数。正数前面也可以加“+”,一般省略不写。
3、负数的大小比较:数字越大的负数反而越小。
2、 数的认识
知识点一 小数
1、读法:读小数的时候,整数部分按照整数的读法来读,小数点读作:“点”,小数部分从高位到低位顺次读出每个数位上的数字。
2、写法:写小数的时候,整数部分按照整数的写法来写,小数点点在个位的右下角,小数部分从高位到低位顺次写出每个数位的数字。
3、小数的大小比较:比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数相同的,百分位上的数大的那个数就大……。
4、求小数的近似数:根据要求保留小数位数,确定好从哪一位起按照“四舍五入”的方法省略尾数。
5、小数化成分数的方法:先把小数改写成分母是10,100,1000……的分数,再约分,就化成了分数。
6、小数化成百分数的方法:先将小数点向右移动两位,再在后面添上%,就化成了百分数。
7、小数的分类:(1)纯小数都小于1,带小数大于或小数。
(2)有限小数:小数部分位数是有限的。无限小数:小数部分位数是无限的。(3)无限小数的分类:在无限小数中又分为无限循环小数和无限不循环小数。(4)循环节:一个数的小数部分,依次不断重复出现的一个或几个数字,叫作这个循环小数的循环节。(5)循环点:记循环小数时,在第一个数字和最末一个数字上分别记上一个圆点“.”,表示这个循环小数的这几个(或一个)数字重复出现,这样的圆点叫作循环点。
8、小数的基本性质:小数的末尾添上0或者去掉0,小数的大小不变。
知识点二 分数
1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几分的数叫作分数。表示其中一份的数是这个分数的分数单位。
2、分数的分类:(1)真分数:分子比分母小的分数。(2)假分数:分子大于或等于分母的分数。
3、分数大小比较:(1)分子相同的分数,分母小的分数比较大。(2)分母相同的分数,分子大的分数就大。(3)分子、分母都不相同的分数,先化成相同分母的分数,再比较大小或者化成分子相同的分数,再比较大小。
知识点三 百分数。
1、百分数的定义:像2%,5%,120%…这样的分数叫百分数,也叫百分比或百分率。表示一个数是另一个数的百分之几。
知识点四 分数和百分数的区别。
分数既可以表示一个数,也可以表示两个数的比;而百分数只表示一个数占另一个数的百分比,不能用来表示具体数。所以分数可以有单位,百分数不能有单位。
知识点五 比
1、比的意义:两个数相除又叫作两个数的比。
2、比的意义的应用:根据比的意义可以求比值,用前项除以后项,得到的结果是一个数。
3、比的基本性质:比的前项和后项都乘或除以相同的数(0除外)比值不变。
4、比的基本性质的应用,可以化简比。
二、 例题精讲。
例题1:我国普通小学在校生有108645000人,读作:( ),其中6在( )位上,万位上的数是( ),改写成用“亿”作单位,并保留两位小数约是( )亿人。
【分析】(这道题是对数的读法、数的改写这两个知识点的运用)从高位到低位,一级一级地读,个级的3个0都不读;从低位到高位,一级一级地数,6在十万位上,万位上的数是4;先把108645000这个数改写成以“亿”为单位的数;在把改写后的数按照“四舍五入”法保留两位小数。
解答:一亿零八百六十四万五千 十万 4 1.09
提示:在读数位较多的数时,可用“,”进行分级后再一级一级读。
例题2 : 填一填
(1)世界最高峰珠穆朗玛峰约八千八百四十四点四三米。这个数写作:( )
(2)把0.66,66.6%,0.67, 按从小到大顺序填入下面的括号。
( )<( )<( )<( )
(3) 的分子加上8,要使分数的大小不变,分母应加上( )
(4)2厘米与4米的最简整数比是( ),比值是( )
【分析】(1)整数部分按照整数的写法来写,小数点点在个位的右下角,小数部分顺次写出每个数位上的数字。
(2)把66.6%和 都改写成小数,然后按照小数比较大小的方法进行比较。
(3) 的分子加上8,则分子变成12,分子4扩大到原来的3倍是12,要想分数值不变,分母也得扩大到原来的3倍,9扩大到原来的3倍是27,再想9加几得27。
(4)先统一单位,4米=400厘米,再把2:400化成最简整数比,求比值用比的前项除以比的后项。
解答:(1)写作:8844.43米
(2)(0.66)<(66.6%)<( )<(0.67)
(3)18
(4)1:200
例题3:一段路甲走了 时,乙走了 时,甲、乙的速度比是多少?
【分析】一段路的总路程可以看作单位“1”,则甲的速度是1÷ = ,乙的速度是1÷ = ,甲和乙的速度比是 : ,把比的前项和后项同时扩大到原来的18倍,这样就化成了最简整数比。
解答: : = ×18: ×18=27:20
答:甲、乙的速度比是27:20。
提示:解答此类问题,可以将未知的总量看作单位“1”,然后进行计算,注意结果要写成最简整数比的形式。
三、 专题训练。
1、爸爸的手表每6时快2秒,如果不调整,一天要快多少秒?

2、在一个长8厘米,周长是22厘米的长方形内画一个最大的三角形,这个三角形的面积是多少平方厘米?

3、小明、小红、小刚三人定期去少年宫学习。小明每过5天去一次,小红每过6天去一次,小刚每过9天去一次。如果9月10日这一天他们三人在少年宫相遇,那么下次相遇在哪一天?

4、一只蜗牛沿着10米高的柱子往上爬,每天从清早到傍晚共向上爬5米,夜间下滑4米,像这样,从某天清晨开始,它需要几天才能爬上柱子的顶端?

5、填一填。
(1)0.25=( )÷12= =6:( )=( )%
(2)把 的分子减去3,要使分数的大小不变,分母应减去( )
(3)把0.46扩大( )倍是460,把56缩小到它的 是( )
(4)6.2098保留两位小数是( ),精确到千分位是( )。

6、一个数的 正好是3的40%,求这个数。

7、某机床厂去年生产机床720台,比原计划多生产机床120台,去年实际生产的机床数超过原计划的百分之几?

8、工程队修一条路,已修的和未修的长度比是1:5,再修490米后,已修的与未修的长度的比值恰好是3,这条路全长是多少米?

9、一桶油连桶共重40千克。倒出一部分油后,桶里的油还剩40%,这时连桶称共重19.6千克,这个桶原来共装油多少千克?

10、小红看了一本故事书,第一天看了这本书的一半多10页,第二天又看了余下的一半多10页,第三天看了10页正好看完。这本故事书共有多少页?
四、 参考答案。
1、解析:一天有24小时,24时里有4个6小时,一个6小时就快2秒,4个6小时就快了4个2秒。即:
24÷6×2=8(秒)
答:一天要快8秒。

2、解析:根据三角形的面积公式“底×高÷2”要知道底和高就可以求出三角形的面积。画一个最大的三角形,长方形的长作为三角形的底,长方形的宽可以作为三角形的高。先求高:(就是长方形的宽)周长除以2再减长即22÷2-8=3厘米。长是已知的是8厘米。三角形的面积为:
(22÷2-8)×8÷2=12(平方厘米)
答:这个三角形的面积是12平方厘米。

3、解析:根据题意可知关键就是求5、6和9的最小公倍数,它们的最小公倍数是90。在9月10日再过90天就是12月9日

4、解析:每天向上爬1米,前5天爬到第5米处,最后一天爬5米。所以需要6天的时间。

5、解析:(1)3,20,24,25
(2)4
(3)1000,0.56
(4)6.21,6.210

6、解析:3×40%÷ =6。

7、解析:求超过原计划的百分之几?用超过的120台除以原计划的就可以了。
120÷(720-120)=20%
答:去年实际生产的机床数超过原计划的20%。
8、解析:把已修和未修的比转换为已修的是全长的 。再修490米后,比值是3,说明已修的和未修的比是3:1,已修的是全长的 。这样490米就是 比 多的分率。即:
490÷( )
=490÷
=840(米)
答:这条路全长是840米。

9、解析:倒出一部分油,即(40-19.6)。桶里还剩40%,就是倒出(1-40%)60%。可知这桶原来共装油为:
(40-19.6)÷(1-40%)
=20.4÷60%
=34(千克)
答:这个桶原来共装油34千克 

10、解析:

看图观察:
(10+10)÷(1- )=40(页)
(40+10)÷(1- )=100(页)
答:这本故事书共有100页。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式