高数问题,定积分求体积
2个回答
展开全部
y=x^(1/3) ,x=a, x-轴: y=0
Vx
=π ∫(0->a) y^2 dx
=π ∫(0->a) x^(2/3) dx
= (3/5)π. a^(5/3)
Vy
=π ∫(0->a^(1/3) ) x^2 dy
=π ∫(0->a^(1/3) ) (y^3)^2 dy
=(1/7)π.a^(7/3)
Vy =10Vx
(1/7)π.a^(7/3) = 10[ (3/5)π. a^(5/3)]
(1/7)a^(7/3) = 6a^(5/3)
a^(2/3) =42
a= 42^(3/2)
Vx
=π ∫(0->a) y^2 dx
=π ∫(0->a) x^(2/3) dx
= (3/5)π. a^(5/3)
Vy
=π ∫(0->a^(1/3) ) x^2 dy
=π ∫(0->a^(1/3) ) (y^3)^2 dy
=(1/7)π.a^(7/3)
Vy =10Vx
(1/7)π.a^(7/3) = 10[ (3/5)π. a^(5/3)]
(1/7)a^(7/3) = 6a^(5/3)
a^(2/3) =42
a= 42^(3/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询