如图在三角形ABC中,BE,CF分别是AC、AB边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.
如图在三角形ABC中,BE,CF分别是AC、AB边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.是判断AD与AG关系,并说明理由...
如图在三角形ABC中,BE,CF分别是AC、AB边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.是判断AD与AG关系,并说明理由
展开
2个回答
推荐于2017-11-25
展开全部
关系为AG=AD,AG⊥CD
证明:
∵ BE,CF分别是AC,AB两边上的高
∴∠AFC=∠AEB=90°
又∵∠BAE=∠CAF (公共角)
∴∠ABE=∠ACF (同角的余角相等)
又∵ AB=GC BD=CA ( 已知)
∴△ABD≌△ACG (SAS)
∴ AG=AD
∠BAD= ∠AGF (全等三角形的性质 )
又∵∠AGF+∠GAF=∠AFC=90°(三角形的外角性质)
∴ ∠BAD+∠GAF=90°
∴∠GAD=90°
∴ AG ⊥AD
证明:
∵ BE,CF分别是AC,AB两边上的高
∴∠AFC=∠AEB=90°
又∵∠BAE=∠CAF (公共角)
∴∠ABE=∠ACF (同角的余角相等)
又∵ AB=GC BD=CA ( 已知)
∴△ABD≌△ACG (SAS)
∴ AG=AD
∠BAD= ∠AGF (全等三角形的性质 )
又∵∠AGF+∠GAF=∠AFC=90°(三角形的外角性质)
∴ ∠BAD+∠GAF=90°
∴∠GAD=90°
∴ AG ⊥AD
展开全部
∵BE,CF分别是AC,AB边上的高,
∴∠ABE+∠BAC=90°,∠ACG+∠BAC=90°
∴∠ABE=∠ACG,
又∵BD=AC, BA=CG,
∴△ABD≌△GCA(SAS)
∴AD=AG
∴∠ABE+∠BAC=90°,∠ACG+∠BAC=90°
∴∠ABE=∠ACG,
又∵BD=AC, BA=CG,
∴△ABD≌△GCA(SAS)
∴AD=AG
追问
有没有AD垂直于AG呢
追答
AD与AG的位置关系是垂直
证明:
因为△ABD≌△GCA
所以∠BAD=∠CGA
因为∠CGA+∠GAF=90°
所以∠BAD+∠GAF=90°
所以 ∠DAG=90°
所以AD⊥AG
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询