![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
已知函数f(x)=mx^2-mx-6+m,m∈R 若对于m∈(-2,2),f(x)<0恒成立,求实数x的取值范围
2个回答
展开全部
∵恒有x²-x+1>0.
∴f(x)<0,即mx²-mx-6+m<0
可化为:m<6/(x²-x+1).
∴由题设可知,应恒有2≤6/(x²-x+1)
∴x²-x+1≤3
∴(x-2)(x+1)≤0
∴-1≤x≤2
∴f(x)<0,即mx²-mx-6+m<0
可化为:m<6/(x²-x+1).
∴由题设可知,应恒有2≤6/(x²-x+1)
∴x²-x+1≤3
∴(x-2)(x+1)≤0
∴-1≤x≤2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询