已知向量A=(cosa,sina) ,向量B=(cosb,sinb)

 我来答
龙南医疗120
2019-10-27 · TA获得超过3.7万个赞
知道小有建树答主
回答量:1.2万
采纳率:34%
帮助的人:864万
展开全部
由已知
ka+b=(kcosa+cosb,ksina+sinb)
a-kb=(cosa-kcosb,sina-ksinb)
ka+b与a-kb模相等
根号(ka+b)^2=根号(a-kb)^2
(kcosa+cosb)^2+(ksina+sinb)^2=(cosa-kcosb)^2+(sina-ksinb)^2
k^2cosa^2+cosb^2+2kcoacosb+k^2sina^2+sinb^2+2ksinasinb-cosa^2-k^2cosb^2+2kcosacosb-sina^2-k^2sinb^2+2ksinasinb=0
k^2+1+2kcosacosb+2ksinasinb-1-k^2+2kcosacosb+2ksinasinb=0
k^2+4k(cosacosb+sinasinb)=0
k^2+4kcos(a-b)=0
k=0(舍)
或k=-4cos(a-b)
a·b=cosacosb-sinasinb=cos(a-b)=0
所以向量a⊥b
然后展开约,约完能算出k近而求证出a⊥b
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式