已知A、B、C为△ABC的三个内角,它们的对边分别为a、b、c,且cosBcosC-sinBsinC=1/2,(1)求A
4个回答
展开全部
1.cos(B+C)=0.5 为三角形内角 B+C为60° A为120°
2.由余弦定理 a方=b方+c方-2bccosA得bc=4 S=1/2bcsinA=1/2*4*根号3/2=根号3
2.由余弦定理 a方=b方+c方-2bccosA得bc=4 S=1/2bcsinA=1/2*4*根号3/2=根号3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)cosBcosC-sinBsinC=cos(B+C)=cos(π-A)=-cosA=1/2。
所以,cosA=-1/2、A=2π/3。
(2)b+c=4,则(b+c)^2=16。
用余弦定理:b^2+c^2-2bccosA=b^2+c^2+bc=(b+c)^2-bc=16-bc=a^2=12、bc=4。
三角形ABC的面积=(1/2)bcsinA=(1/2)*4*(√3/2)=√3。
所以,cosA=-1/2、A=2π/3。
(2)b+c=4,则(b+c)^2=16。
用余弦定理:b^2+c^2-2bccosA=b^2+c^2+bc=(b+c)^2-bc=16-bc=a^2=12、bc=4。
三角形ABC的面积=(1/2)bcsinA=(1/2)*4*(√3/2)=√3。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询