导数部分】“函数f(x)在x=a处可导”是什么意思?
1个回答
展开全部
设y=f(x)是一个单变量函数,如果y在x=x[0]处存在导数y'=f'(x),则称y在x=x[0]处可导.
如果一个函数在x[0]处可导,那么它一定在x[0]处是连续函数
函数可导定义:
(1)若f(x)在x0处连续,则当a趋向于0时,[f(x+a)-f(x)]/a存在极限(左右极限相等),则称f(x)在x0处可导.
(2)若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导
如果一个函数在x[0]处可导,那么它一定在x[0]处是连续函数
函数可导定义:
(1)若f(x)在x0处连续,则当a趋向于0时,[f(x+a)-f(x)]/a存在极限(左右极限相等),则称f(x)在x0处可导.
(2)若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询