求由抛物线y^2=x-1与其在点(2,1),(2,-1)处的切线所围成的面积

 我来答
华源网络
2022-09-11 · TA获得超过5598个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:147万
展开全部
在(2,1)点的切线斜率为1/2
方程为y - 1 = 1/2 (x-2)
该线与x轴交点为(0,0)
图形面积= 三角形面积-抛物线与x=2之间的面积
抛物线面积(一半) = 积分(ydx) =积分(sqrt(x)dx) (0->1) = 2/3
所围成的面积=2 - 4/3 = 2/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式