在直角三角形ABC中,点D是斜边AB的中点,点P是线段CD的中点,则

(lPAl^2+lPBl^2)/lPCl^2=???求详解!!!... (lPAl^2+lPBl^2)/lPCl^2=??? 求详解!!! 展开
allenrq111
2012-06-26 · TA获得超过597个赞
知道小有建树答主
回答量:214
采纳率:0%
帮助的人:122万
展开全部
假设PC=PD=X,则AD=BD=2X
lPAl^2=lPCl^2+lADl^2-2lPCl*lADlCOS∠PDA
同理
lPBl^2=lPCl^2+lBDl^2-2lPCl*lBDlCOS∠PDB
∠PDA+∠PDB=180度
故(lPAl^2+lPBl^2)=lPCl^2+lADl^2+lPCl^2+lBDl^2=10X^2
(lPAl^2+lPBl^2)/lPCl^2=10
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式