已知f(α)=[sin(5π-α)cos(α+3π/2)cos(π+α)]/[sin(α-3π/2)cos(α+π/2)tan(α-3π)]
1个回答
展开全部
f(α)=[sin(5π-α)cos(α+3π/2)cos(π+α)]/[sin(α-3π/2)cos(α+π/2)tan(α-3π)]
=[sin(π-a)cos(a-π/2)cos(π+a)]/[sin(a+π/2)cos(a+π/2)tan(a-π)]
=[(sina)(sina)(-cosa)]/[(sina)(cosa)(sina/cosa)]
=-cosa
cos(3π/2-α)=1/5,cos(-π/2-α)=1/5,cos(π/2+α)=1/5,cosa=1/5
f(a)=-cosa=-1/5
=[sin(π-a)cos(a-π/2)cos(π+a)]/[sin(a+π/2)cos(a+π/2)tan(a-π)]
=[(sina)(sina)(-cosa)]/[(sina)(cosa)(sina/cosa)]
=-cosa
cos(3π/2-α)=1/5,cos(-π/2-α)=1/5,cos(π/2+α)=1/5,cosa=1/5
f(a)=-cosa=-1/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询