求y"=y'+x的通解

 我来答
小太阳one
高粉答主

2018-09-20 · 醉心答题,欢迎关注
知道小有建树答主
回答量:115
采纳率:0%
帮助的人:3.1万
展开全部

令p=y',则原式化为 p'=p+x

对应齐次线性方程 p'=p 即dp/p=dx

得 ln|p|=x+C',p=Ce^x

令C=u(x)(这里简写为u)

则p=ue^x①

p'=u'e^x+ue^x②

将①②代入p'=p+x,得u'=xe^(-x)

方程两边同时积分

得u=-(x+1)e^(-x)+C1'

代入①得p=-x-1+C1e^x,即dy=(-x-1+C1e^x)dx

两边同时积分,得 y=-(x^2)/2-x+C1e^x+C2

扩展资料:

1、对于一个微分方程而言,其解往往不止一个,而是有一组,可以表示这一组中所有解的统一形式,称为通解(general solution)。对一个微分方程而言,它的解会包括一些常数,对于n阶微分方程,它的含有n个独立常数的解称为该方程的通解。

2、求微分方程通解的方法有很多种,如:特征线法,分离变量法及特殊函数法等等。而对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解。

优特美尔电子
2024-11-20 广告
优特美尔商城是深圳市优特美尔电子有限公司所属的一站式电子元器件采购平台, 依托创始人在电子元器件18年的积累,目前平台汇集了近 3000家品牌供应商、近3000万现货SKU,海内外注册用户超过3万,日均询单2000+。 优特美尔商城基于货源... 点击进入详情页
本回答由优特美尔电子提供
xbdxzjw
2012-06-28 · TA获得超过1175个赞
知道小有建树答主
回答量:503
采纳率:100%
帮助的人:163万
展开全部
设y'=p(x),则p'-p=x,是关于p的一阶线性微分方程,由通解公式得p=e^x[x*e^(-x)的积分+c1]=-x-1+c1*e^x=dy/dx,分离变量,两边积分得 y=-(x^2)/2+x+C1*e^x+C2.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2021-02-07 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1531万
展开全部

积分2次就行,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
军之师
2018-07-10
知道答主
回答量:2
采纳率:0%
帮助的人:1772
引用xbdxzjw的回答:
设y'=p(x),则p'-p=x,是关于p的一阶线性微分方程,由通解公式得p=e^x[x*e^(-x)的积分+c1]=-x-1+c1*e^x=dy/dx,分离变量,两边积分得 y=-(x^2)/2+x+C1*e^x+C2.
展开全部
y=-(x^2)/2-x+C1*e^x+C2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
张莉雄
2018-03-14
知道答主
回答量:1
采纳率:0%
帮助的人:882
引用xbdxzjw的回答:
设y'=p(x),则p'-p=x,是关于p的一阶线性微分方程,由通解公式得p=e^x[x*e^(-x)的积分+c1]=-x-1+c1*e^x=dy/dx,分离变量,两边积分得 y=-(x^2)/2+x+C1*e^x+C2.
展开全部
答案最后那个是-X
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 4条折叠回答
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式