设数列{an}满足a1=1/2 2an+1=(1+1/n)an (1)求证数列{an/n} 为等比数列 (2)求数列{an }的前n项和
展开全部
2an+1=(n+1)an/n
即an+1/(n+1)=1/2*an/n
设bn=an/n
有bn+1=an+1/(n+1)
bn+1/bn=[an+1/(n+1)]/(an/n)=1/2
{bn}为等比数列,也就是{an/n}为等比数列。
Sn=1/2+1/2*(1+1)/(2*1)+1/2*(2+1)/(2*2)+1/2*(3+1)/(2*3)+.....+1/2*n/(2n-2)
=1/4[1+(1+1)/1+(2+1)/2+(3+1)/3+.....+n/(n-1)]
=n/4+1/4[1+1/2+1/3+1/4+...+1/(n-1)]-1/4
=n/4+lnn/4-1/4
=(n+lnn-1)/4
即an+1/(n+1)=1/2*an/n
设bn=an/n
有bn+1=an+1/(n+1)
bn+1/bn=[an+1/(n+1)]/(an/n)=1/2
{bn}为等比数列,也就是{an/n}为等比数列。
Sn=1/2+1/2*(1+1)/(2*1)+1/2*(2+1)/(2*2)+1/2*(3+1)/(2*3)+.....+1/2*n/(2n-2)
=1/4[1+(1+1)/1+(2+1)/2+(3+1)/3+.....+n/(n-1)]
=n/4+1/4[1+1/2+1/3+1/4+...+1/(n-1)]-1/4
=n/4+lnn/4-1/4
=(n+lnn-1)/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询