高次不等式,的奇串偶不串什么意思?讲的通俗易懂点 5

 我来答
汪汉祺
推荐于2016-05-08 · TA获得超过6502个赞
知道小有建树答主
回答量:616
采纳率:44%
帮助的人:302万
展开全部

这是一种画高次不等式图象的方法。

奇与偶指的是次数,首先你要在数轴上标出所有的根,然后根据次数画图像。

次数是奇数的时候,线过点由上到下或者有下到上穿过去
次数是偶数的时候,不穿过去。


解不等式是初等数学重要内容之一,高中数学常出现高次不等式,其类型通常为一元高次不等式。常用的解法有化为不等式组法、列表法和根轴法(串根法或穿针引线法)来求解。

其它解法:

列表法:

解题步骤是:

①将不等式化为(x-x1)(x-x2)…(x-xn)>0(<0)形式(各项x的符号化“+”),令(x-x1)(x-x2)…(x-xn)=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,n个分界点把数轴分成n+1部分……;

②按各根把实数分成的n+1部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列);

③计算各区间内各因式的符号,下面是乘积的符号;

④看下面积的符号写出不等式的解集.

例题解不等式:(x-1)(x+2)(x-3)>0;

解:①检查各因式中x的符号均正;

②求得相应方程的根为:-2,1,3;

③列表如下:

④由上表可知,原不等式的解集为:{x|-2<x<1或x>3}.


根轴法

①将不等式化为(x-x1)(x-x2)…(x-xn)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)

②求根,并在数轴上表示出来;

③由右上方穿线,经过数轴上表示各根的点(为什么?原因为:当x=+

  

时不等式左侧恒为正。);

④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.

注意:奇穿偶不穿

例题解不等式:(x-2)(x-3)(x+1)<0.

解:①检查各因式中x的符号均正;

②求得相应方程的根为:-1,2,3(注意:2是二重根,3是三重根);

③在数轴上表示各根并穿线,每个根穿一次(自右上方开始),如下图:

④∴原不等式的解集为:{x|-1<x<2或2<x<3}.

说明:∵3是三重根,∴在C处穿三次,2是二重根,∴在B处穿两次,结果相当于没穿.由此看出,当左侧f(x)有相同因式(x-x1)时,n为奇数时,曲线在x1点处穿过数轴;n为偶数时,曲线在x1点处不穿过数轴,不妨归纳为“奇穿偶不穿”.

告顺秋静柏
2020-01-30 · TA获得超过3965个赞
知道大有可为答主
回答量:3173
采纳率:26%
帮助的人:245万
展开全部

这是一种画高次不等式图象的方法。
奇与偶指的是次数,首先你要在数轴上标出所有的根,然后根据次数画图像。
次数是奇数的时候,线过点由上到下或者有下到上穿过去
次数是偶数的时候,不穿过去。
解不等式是初等数学重要内容之一,高中数学常出现高次不等式,其类型通常为一元高次不等式。常用的解法有化为不等式组法、列表法和根轴法(串根法或穿针引线法)来求解。
其它解法:
列表法:
解题步骤是:
①将不等式化为(x-x1)(x-x2)…(x-xn)>0(<0)形式(各项x的符号化“+”),令(x-x1)(x-x2)…(x-xn)=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,n个分界点把数轴分成n+1部分……;
②按各根把实数分成的n+1部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列);
③计算各区间内各因式的符号,下面是乘积的符号;
④看下面积的符号写出不等式的解集.
例题解不等式:(x-1)(x+2)(x-3)>0;
解:①检查各因式中x的符号均正;
②求得相应方程的根为:-2,1,3;
③列表如下:
④由上表可知,原不等式的解集为:{x|-2<x<1或x>3}.
根轴法
①将不等式化为(x-x1)(x-x2)…(x-xn)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)
②求根,并在数轴上表示出来;
③由右上方穿线,经过数轴上表示各根的点(为什么?原因为:当x=+
  
时不等式左侧恒为正。);
④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.
注意:奇穿偶不穿
例题解不等式:(x-2)(x-3)(x+1)<0.
解:①检查各因式中x的符号均正;
②求得相应方程的根为:-1,2,3(注意:2是二重根,3是三重根);
③在数轴上表示各根并穿线,每个根穿一次(自右上方开始),如下图:
④∴原不等式的解集为:{x|-1<x<2或2<x<3}.
说明:∵3是三重根,∴在C处穿三次,2是二重根,∴在B处穿两次,结果相当于没穿.由此看出,当左侧f(x)有相同因式(x-x1)时,n为奇数时,曲线在x1点处穿过数轴;n为偶数时,曲线在x1点处不穿过数轴,不妨归纳为“奇穿偶不穿”.

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
shine戚七七
2015-09-19 · TA获得超过4.7万个赞
知道大有可为答主
回答量:2万
采纳率:75%
帮助的人:2675万
展开全部
简单高次不等式
解不等式是初等数学重要内容之一,高中数学常出现高次不等式,其类型通常为一元高次不等式。常用的解法有化为不等式组法、列表法和根轴法(串根法或穿针引线法)来求解。

解题步骤是:
①将不等式化为(x-x1)(x-x2)…(x-xn)>0(<0)形式(各项x的符号化“+”),令(x-x1)(x-x2)…(x-xn)=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,n个分界点把数轴分成n+1部分……;
②按各根把实数分成的n+1部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列);
③计算各区间内各因式的符号,下面是乘积的符号;
④看下面积的符号写出不等式的解集.
例题解不等式:(x-1)(x+2)(x-3)>0;
解:①检查各因式中x的符号均正;
②求得相应方程的根为:-2,1,3;

根轴法
①将不等式化为(x-x1)(x-x2)…(x-xn)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)
②求根,并在数轴上表示出来;
③由右上方穿线,经过数轴上表示各根的点(为什么?原因为:当x=+

时不等式左侧恒为正。);
④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.
注意:奇穿偶不穿
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
和处染成爱
2012-07-03
知道答主
回答量:9
采纳率:0%
帮助的人:5.7万
展开全部
关于数轴穿根法:
数轴穿根法 “数轴穿根法”又称“数轴标根法”
第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x前的系数为正数)
例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0
第二步:将不等号换成等号解出所有根。
例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1
第三步:在数轴上从左到右依次标出各根。
例如:-1 1 2
第三步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右跟”上去,一上一下依次穿过各根。
第四步:观察不等号,如果不等号为“>”,则取数轴上方,穿跟线以内的范围;如果不等号为“<”则取数轴下方,穿跟线以内的范围。
例如:
若求(x-2)(x-1)(x+1)>0的根。
在数轴上标根得:-1 1 2
画穿根线:由右上方开始穿根。
因为不等号威“>”则取数轴上方,穿跟线以内的范围。即:-1<x<1或x>2。
穿根法的奇过偶不过定律:就是当不等式中含有有单独的x偶幂项时,如(x^2)或(x^4)时,穿根线是不穿过0点的。但是对于X奇数幂项,就要穿过0点了。还有一种情况就是例如:(X-1)^2.当不等式里出现这种部分时,线是不穿过1点的。但是对于如(X-1)^3的式子,穿根线要过1点。也是奇过偶不过。可以简单记为“奇穿过,偶弹回”。
还有关于分号的问题:当不等式移项后,可能是分式,同样是可以用穿根法的,直接把分号下面的乘上来,变成乘法式子。继续用穿根法,但是注意,解不能让原来分式下面的式子等于0
(引用的别人的)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式