假设整数m、n使得mn+1是24的倍数,证明:m+n也是24的倍数
展开全部
24=3*8
mn+1是3的倍数 m=3k 3k+1 3k+2
n=3k1 3k1+1 3k1+2
显然只有m=3k+1 n=3k1+2或m=3k+2 n=3k1+1 mn+1整除3
所以m+n整除3
mn+1是8的倍数 m=8k 8k+1 8k+2...........8k+7
n=8k1 8k1+1 8k1+2............8k1+7
同理m=8k+1 n=8k1+7或者....... mn+1整除8
这样m+n整除8
结论得证
mn+1是3的倍数 m=3k 3k+1 3k+2
n=3k1 3k1+1 3k1+2
显然只有m=3k+1 n=3k1+2或m=3k+2 n=3k1+1 mn+1整除3
所以m+n整除3
mn+1是8的倍数 m=8k 8k+1 8k+2...........8k+7
n=8k1 8k1+1 8k1+2............8k1+7
同理m=8k+1 n=8k1+7或者....... mn+1整除8
这样m+n整除8
结论得证
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:不妨设mn+1=24k,k为正整数。
由于mn+1为偶数,从而mn为奇数,∴m,n均为奇数。因此,(m+1)(n+1)能被4整除。
又mn同余于-1(mod4),∴m,n两数中必有一数同余于1(mod4),设为m,另一数同余于-1(mod4),设为n。则n+1能整除4。从而(m+1)(n+1)能被8整除。
mn同余于-1(mod3),同上分析可得m同余于1(mod3),n同余于-1(mod3),∴(m+1)(n+1)能被3整除。
由以上分析可得,(m+1)(n+1)能被24整除。而(m+1)(n+1)=mn+m+n+1=24k+m+n,因此两边模24,立得m+n是24的倍数。Q.E.D.
由于mn+1为偶数,从而mn为奇数,∴m,n均为奇数。因此,(m+1)(n+1)能被4整除。
又mn同余于-1(mod4),∴m,n两数中必有一数同余于1(mod4),设为m,另一数同余于-1(mod4),设为n。则n+1能整除4。从而(m+1)(n+1)能被8整除。
mn同余于-1(mod3),同上分析可得m同余于1(mod3),n同余于-1(mod3),∴(m+1)(n+1)能被3整除。
由以上分析可得,(m+1)(n+1)能被24整除。而(m+1)(n+1)=mn+m+n+1=24k+m+n,因此两边模24,立得m+n是24的倍数。Q.E.D.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
好难,这是奥数吧!浪费我半个小时
追问
从我提问到你回答一共才十多分钟,哪来半小时啊?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
貌似见过这题哦,举个例子就行啦,肯定是的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询