2012绵阳中考数学选择题最后一题
展开全部
解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,
∴BP=BP′,∠ABP+∠ABP′=90°,
又∵△ABC是等腰直角三角形,
∴AB=BC,∠CBP′+∠ABP′=90°,
∴∠ABP=∠CBP′,
在△ABP和△CBP′中,
∵ BP=BP′ ∠ABP=∠CBP′ AB=BC ,
∴△ABP≌△CBP′(SAS),
∴AP=P′C,
∵P′A:P′C=1:3,
∴AP=3P′A,
连接PP′,则△PBP′是等腰直角三角形,
∴∠BP′P=45°,PP′= 2 PB,
∵∠AP′B=135°,
∴∠AP′P=135°-45°=90°,
∴△APP′是直角三角形,
设P′A=x,则AP=3x,
根据勾股定理,PP′= AP2-P′A2 = (3x)2-x2 =2 2 x,
∴PP′= 2 PB=2 2 x,
解得PB=2x,
∴P′A:PB=x:2x=1:2.
故选B.
∴BP=BP′,∠ABP+∠ABP′=90°,
又∵△ABC是等腰直角三角形,
∴AB=BC,∠CBP′+∠ABP′=90°,
∴∠ABP=∠CBP′,
在△ABP和△CBP′中,
∵ BP=BP′ ∠ABP=∠CBP′ AB=BC ,
∴△ABP≌△CBP′(SAS),
∴AP=P′C,
∵P′A:P′C=1:3,
∴AP=3P′A,
连接PP′,则△PBP′是等腰直角三角形,
∴∠BP′P=45°,PP′= 2 PB,
∵∠AP′B=135°,
∴∠AP′P=135°-45°=90°,
∴△APP′是直角三角形,
设P′A=x,则AP=3x,
根据勾股定理,PP′= AP2-P′A2 = (3x)2-x2 =2 2 x,
∴PP′= 2 PB=2 2 x,
解得PB=2x,
∴P′A:PB=x:2x=1:2.
故选B.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询