已知f(x)=x^3+3ax^2+(3-6a)x+12a-7在x=x0处取得极小值,若x0属于(1,3),求a的取值范围。
2个回答
展开全部
f(x)=x^3+3ax^2+(3-6a)x+12a-7
=x[x^2+3ax+(3-6a)]+12a-7
=x[x^2+3ax+(3/2a)^2+3-6a-(3/2a)^2)]+12a-7
=x[(x+3/2a)^2+7-(4+6a+(3/2a)^2)]+12a-7
=x[(x+3/2a)^2-(3/2a+2)^2+7]+12a-7
=x[(x+3a+2)(x-2)+7]+12a-7
因为要取极小值
当1<X<2时,x+3a+2>0
a>(-2-x)/3
a>-4/3
当2<x<3时,x+3a+2<0
a<(-2-x)/3
a<-4/3
当=2时,a值与极小无关无法确定
所以
a>-4/3或
a<-4/3
=x[x^2+3ax+(3-6a)]+12a-7
=x[x^2+3ax+(3/2a)^2+3-6a-(3/2a)^2)]+12a-7
=x[(x+3/2a)^2+7-(4+6a+(3/2a)^2)]+12a-7
=x[(x+3/2a)^2-(3/2a+2)^2+7]+12a-7
=x[(x+3a+2)(x-2)+7]+12a-7
因为要取极小值
当1<X<2时,x+3a+2>0
a>(-2-x)/3
a>-4/3
当2<x<3时,x+3a+2<0
a<(-2-x)/3
a<-4/3
当=2时,a值与极小无关无法确定
所以
a>-4/3或
a<-4/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询