∠BAC=90°,AD⊥BC、DE⊥AB、DF⊥AC,垂足分别为D、E、F。求证AB³/AC³=BE/CF
2个回答
展开全部
证明:∵∠BED=∠BAC=90度;∠B=∠B.
∴⊿BED∽⊿BAC,AB/AC=BE/DE; -------------------------------(1)
同理:⊿BAC∽⊿DEA,得AB/AC=DE/AE=DE/DF;----------------(2)
⊿BAC∽⊿DFC,得AB/AC=DF/FC.--------------------------(3)
∴(AB/AC)*(AB/AC)*(AB/AC)=(BE/DE)*(DE/DF)*(DF/CF)=BE/CF.
即AB³/AC³=BE/CF.
∴⊿BED∽⊿BAC,AB/AC=BE/DE; -------------------------------(1)
同理:⊿BAC∽⊿DEA,得AB/AC=DE/AE=DE/DF;----------------(2)
⊿BAC∽⊿DFC,得AB/AC=DF/FC.--------------------------(3)
∴(AB/AC)*(AB/AC)*(AB/AC)=(BE/DE)*(DE/DF)*(DF/CF)=BE/CF.
即AB³/AC³=BE/CF.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询