化简x³-1/x³+2x²+2x+1+x³+1/x³-2x²+2x-1-2x²+2/x²-1

当n为正整数时,1/2+1/4+1/8+...+1/2的n次方=?... 当n为正整数时,1/2+1/4+1/8+...+1/2的n次方=? 展开
zxqsyr
2012-07-18 · TA获得超过14.4万个赞
知道大有可为答主
回答量:3.3万
采纳率:71%
帮助的人:1.6亿
展开全部
(x³-1)/(x³+2x²+2x+1)+(x³+1)/(x³-2x²+2x-1)-(2x²+2)/(x²-1)
=(x-1)(x²+x+1)/[(x³+1)+2x(x+1)]+(x+1)(x²-x+1)/[(x³-1)-2x(x-1)]-(2x²+2)/(x²-1)
=(x-1)(x²+x+1)/[(x+1)(x²-x+1)+2x(x+1)]+(x+1)(x²-x+1)/[(x-1)(x²+x+1)-2x(x-1)]-(2x²+2)/(x²-1)
=(x-1)(x²+x+1)/[(x+1)(x²-x+1+2x)]+(x+1)(x²-x+1)/[(x-1)(x²+x+1-2x)]-(2x²+2)/(x²-1)
=(x-1)(x²+x+1)/[(x+1)(x²+x+1)]+(x+1)(x²-x+1)/[(x-1)(x²-x+1)]-(2x²+2)/(x²-1)
=(x-1)/(x+1)+(x+1)/(x-1)-(2x²+2)/(x²-1)
=(x-1)²/(x+1)(x-1)+(x+1)²/(x+1)(x-1)-(2x²+2)/(x²-1)
=(x-1)²/(x²-1)+(x+1)²/(x²-1)-(2x²+2)/(x²-1)
=[(x-1)²+(x+1)²-(2x²+2)]/(x²-1)
=[x²+2x+1+x²-2x+1-2x²-2]/(x²-1)
=0/(x²-1)
=0

令s=1/2+1/4+1/8+...+1/2^n
s/2=1/4+1/8+...+1/2^(n+1)
s-s/2=1/2-1/2^(n+1)
s/2=1/2-1/2^(n+1)
s=1-1/2^n
即1/2+1/4+1/8+...+1/2^n=1-1/2^n
匿名用户
2012-07-18
展开全部
2x^3-2x^2+4x-1+1/x^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式