已知函数f(x)=2sinxcosx+2√3cos^2x
(1)求函数f(x)的最小正周期(2)当x属于【π/4,3π/4】时,求函数f(x)的最大值与最小值...
(1)求函数f(x)的最小正周期(2)当x属于【π/4,3π/4】时,求函数f(x)的最大值与最小值
展开
3个回答
展开全部
f(x)=2sinxcosx-2根号3cos^2x+根号3
=sin2x-√3(1+cos2x)+√3
=sin2x-√3cos2x
=2[(1/2)sin2x-(√3/2)cos2x]
=2sin(2x-π/3)
所以递增区间为2x-π/3∈[2kπ-π/2, 2kπ+π/2]
即x∈[kπ-π/12, kπ+5π/12]
递减区间为2x-π/3∈[2kπ+π/2, 2kπ+3π/2]
即x∈[kπ+5π/12, kπ+11π/6]
=sin2x-√3(1+cos2x)+√3
=sin2x-√3cos2x
=2[(1/2)sin2x-(√3/2)cos2x]
=2sin(2x-π/3)
所以递增区间为2x-π/3∈[2kπ-π/2, 2kπ+π/2]
即x∈[kπ-π/12, kπ+5π/12]
递减区间为2x-π/3∈[2kπ+π/2, 2kπ+3π/2]
即x∈[kπ+5π/12, kπ+11π/6]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解
f(x)=2sinxcosx+2√3cos²x-√3
=sin2x+√3(2cos²x-1)
=sin2x+√3cos2x
=2(1/2sin2x+√3/2cos2x)
=2(sin2xcosπ/3+cos2xsinπ/3)
=2sin(2x+π/3)
T=2π/2=π是f(x)的最小正周期
∵-1≤sin(2x+π/3)≤1
∴f(x)的最小值为:2×(-1)=-2
(2)f(A)=2sin(2A+π/3)=1
∴2A+π/3=π/6+kπ
或2A+π/3=5π/6+kπ
∵A∈(0,π/2)
∴A=60
∵AB*AC=√2
∴cbcosA=√2
即cb=2√2
∴s=1/2cbsinA=√2×√3/2=√6/2
f(x)=2sinxcosx+2√3cos²x-√3
=sin2x+√3(2cos²x-1)
=sin2x+√3cos2x
=2(1/2sin2x+√3/2cos2x)
=2(sin2xcosπ/3+cos2xsinπ/3)
=2sin(2x+π/3)
T=2π/2=π是f(x)的最小正周期
∵-1≤sin(2x+π/3)≤1
∴f(x)的最小值为:2×(-1)=-2
(2)f(A)=2sin(2A+π/3)=1
∴2A+π/3=π/6+kπ
或2A+π/3=5π/6+kπ
∵A∈(0,π/2)
∴A=60
∵AB*AC=√2
∴cbcosA=√2
即cb=2√2
∴s=1/2cbsinA=√2×√3/2=√6/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询