如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系、已知OA

如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系、已知OA=12,OC=10,在OA上取一点D,将△BDA沿BD翻折,使... 如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系、已知OA=12,OC=10,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点E处。
(1)试判断四边形ABED的形状,并说明理由;(2)若点F是AB的中点,P是x轴上一点,且以点C,F,P为顶点的三角形是等腰三角形,求P点坐标。
展开
心里美678
2012-07-25 · TA获得超过6665个赞
知道大有可为答主
回答量:1178
采纳率:100%
帮助的人:623万
展开全部
(1), 四边形ABED是正方形
据题意,AB=BE,AD=DE,角ABD=角EBD,角BAD=角BED=角ABE=90度
而 角ABD+角EBD=角ABE=90度
所以 角ABD=角EBD=45度
所以 AB=AD,
所以 ABED是四边形
(2)
已知 C点坐标为(0,10), F点坐标为(12,5), 设P(x,0)
那么 CF^2=12^2+(10-5)^2=169
CP^2=x^2+10^2=x^2+100
FP^2=(x-12)^2+5^2=x^2-24x+169
若 CF=CP
则 x^2+100=169, 得 x=+/-√69
若 CF=FP
则 x^2-24x+169=169 得 x1=0, x2=24
经验算,P(24,0)与C,F在一条直线上,不能构成三角形
若 CP=FP
则 x^2-24x+169=x^2+100 得 x=23/8
综上,使CFP为等腰三角形的P点坐标为 (√69, 0), (-√69, 0), (0,0), (23/8,0)
15080191995
2012-07-26
知道答主
回答量:81
采纳率:0%
帮助的人:27.9万
展开全部
有四种情况,三个答案:
当C、B在正半轴时:
(0,0)或(0,2)
当C、B在负半轴时:
(0,0) 或(0,-4) 你好!问题分析了一下,前提是这两个点肯定是有的,就像这个图一样,这样算出来的四边形的周长是最小的,最终结果为5+√5。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式