(2014?孝感)抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和(-2,0)之间,其
(2014?孝感)抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①b2-4ac<0;...
(2014?孝感)抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①b2-4ac<0;②a+b+c<0;③c-a=2;④方程ax2+bx+c-2=0有两个相等的实数根.其中正确结论的个数为( )A.1个B.2个C.3个D.4个
展开
展开全部
∵抛物线与x轴有两个交点,
∴b2-4ac>0,所以①错误;
∵顶点为D(-1,2),
∴抛物线的对称轴为直线x=-1,
∵抛物线与x轴的一个交点A在点(-3,0)和(-2,0)之间,
∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,
∴当x=1时,y<0,
∴a+b+c<0,所以②正确;
∵抛物线的顶点为D(-1,2),
∴a-b+c=2,
∵抛物线的对称轴为直线x=-
=-1,
∴b=2a,
∴a-2a+c=2,即c-a=2,所以③正确;
∵当x=-1时,二次函数有最大值为2,
即只有x=-1时,ax2+bx+c=2,
∴方程ax2+bx+c-2=0有两个相等的实数根,所以④正确.
故选:C.
∴b2-4ac>0,所以①错误;
∵顶点为D(-1,2),
∴抛物线的对称轴为直线x=-1,
∵抛物线与x轴的一个交点A在点(-3,0)和(-2,0)之间,
∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,
∴当x=1时,y<0,
∴a+b+c<0,所以②正确;
∵抛物线的顶点为D(-1,2),
∴a-b+c=2,
∵抛物线的对称轴为直线x=-
b |
2a |
∴b=2a,
∴a-2a+c=2,即c-a=2,所以③正确;
∵当x=-1时,二次函数有最大值为2,
即只有x=-1时,ax2+bx+c=2,
∴方程ax2+bx+c-2=0有两个相等的实数根,所以④正确.
故选:C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询