设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是______.... 设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是______. 展开
 我来答
乐晴凸2927
2014-08-31 · TA获得超过266个赞
知道答主
回答量:153
采纳率:100%
帮助的人:76.6万
展开全部
解:由f(x)=x2-ax+a+3知f(0)=a+3,f(1)=4,
又存在x0∈R,使得f(x0)<0,
知△=a2-4(a+3)>0即a<-2或a>6,
另g(x)=ax-2a中恒过(2,0),
故由函数的图象知:
①若a=0时,f(x)=x2-ax+a+3=x2+3恒大于0,显然不成立.
②若a>0时,g(x0)<0?x0<2
a>0
f(2)<0
?a>7

③若a<0时,g(x0)<0?x0>2
此时函数f(x)=x2-ax+a+3图象的对称轴x=
a
2
<?1

故函数在区间(
a
2
,+∞)上为增函数
又∵f(1)=4,
∴f(x0)<0不成立.
故答案为:(7,+∞).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式