如图,等边△ABC的边长为12cm,点D、E分别在边AB、AC上,且AD=AE=4cm,若点F从点B开始以2cm/s的速度沿射

如图,等边△ABC的边长为12cm,点D、E分别在边AB、AC上,且AD=AE=4cm,若点F从点B开始以2cm/s的速度沿射线BC方向运动,设点F运动的时间为t秒,当t... 如图,等边△ABC的边长为12cm,点D、E分别在边AB、AC上,且AD=AE=4cm,若点F从点B开始以2cm/s的速度沿射线BC方向运动,设点F运动的时间为t秒,当t>0时,直线FD与过点A且平行于BC的直线相交于点G,GE的延长线与BC的延长线相交于点H,AB与GH相交于点O.(1)设△EGA的面积为S(cm2),求S与t的函数关系式;(2)在点F运动过程中,试猜想△GFH的面积是否改变?若不变,求其值;若改变,请说明理由;(3)请直接写出t为何值时,点F和点C是线段BH的三等分点. 展开
 我来答
敢当创业课堂8201
2014-10-09 · TA获得超过128个赞
知道答主
回答量:142
采纳率:0%
帮助的人:149万
展开全部
解答:解:(1)作EM⊥GA,垂足为M.
∵△ABC是等边三角形,
∴∠ACB=60°.
∵GA∥BC,
∴∠MAE=60°.
∵AD=AE=4,
∴ME=AE?sin60°=2
3
,BD=AB-AD=8,
又GA∥BH,
∴△AGD∽△BFD,
AG
BF
=
AD
BD
=
1
2

又∵BF=2t,
∴AG=t.
∴S=
3
t.

(2)猜想:不变.
∵AG∥BC,
∴△AGD∽△BFD,△AGE∽△CHE,
AG
BF
=
AD
BD
AG
CH
=
AE
EC

AD
BD
=
AE
EC

AG
BF
=
AG
CH

∴BF=CH.
情况①:0<t<6时,
∵BF=CH,
∴BF+CF=CH+CF,
即:FH=BC;
情况②:t=6时,有FH=BC;
情况③:t>6时,
∵BF=CH,
∴BF-CF=CH-CF,
即:FH=BC.
∴S△GFH=S△ABC=36
3

综上所述,当点F在运动过程中,△GFH的面积为36
3
cm2

(3)∵BC=FH,∴BF=CH.
①当点F在线段BC边上时,若点F和点C是线段BH的三等分点,则BF=FC=CH.
∵BC=12,∴BF=FC=6,
又∵点F的运动速度为2cm/s,
∴t=3.
∴当t=3时,点F和点C是线段BH的三等分点;
②当点F在BC的延长线上时,若点F和点C是BH的三等分点,则BC=CF=FH.
∵BC=12,∴CF=12,∴BF=24,
又∵点F的运动速度为2cm/s,
∴t=12.
∴当t=12时,点F和点C是线段BH的三等分点;
综上可知:当t=3s或12s时,点F和点C是线段BH的三等分点.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式