展开全部
由条件得
a=-(b+c)
因为2a^2+bc=a^2+a^2+bc
所以 =a^2-(b+c)a+bc
=(a-b)(a-c)
同理,2b^2+ac=(b-a)(b-c)
2c^2+ab=(c-a)(c-b)
所以,原式=a^2/(a-b)(a-c)+b^2/(b-a)(b-c)+c^2/(c-a)(c-b)
{变号} =a^2/(a-b)(a-c)-b^2/(a-b)(b-c)+c^2/(a-c)(b-c)
之后通分,得[ a²(b-c)-b²(a-c)+c²(a-b) ]/(a-b)(a-c)(b-c)
将分母展开即可得到结果为1。
a=-(b+c)
因为2a^2+bc=a^2+a^2+bc
所以 =a^2-(b+c)a+bc
=(a-b)(a-c)
同理,2b^2+ac=(b-a)(b-c)
2c^2+ab=(c-a)(c-b)
所以,原式=a^2/(a-b)(a-c)+b^2/(b-a)(b-c)+c^2/(c-a)(c-b)
{变号} =a^2/(a-b)(a-c)-b^2/(a-b)(b-c)+c^2/(a-c)(b-c)
之后通分,得[ a²(b-c)-b²(a-c)+c²(a-b) ]/(a-b)(a-c)(b-c)
将分母展开即可得到结果为1。
参考资料: http://zhidao.baidu.com/question/121721603.html
展开全部
已知a+b+c=0,试求 a^2/[2a^2+bc]+b^2/[2b^2+ac]+c^2/[2c^2+ab]的值
a+b+c=0=====>a+b=-c
a^3+b^3=(a+b)(a^2-ab+b^2)=-c[(a+b)^2-3ab]=-c(c^2-3ab)=3abc-c^3
a^2/[2a^2+bc]+b^2/[2b^2+ac]
=[a^2(2b^2+ac)+b^2(2a^2+bc)]/[(2a^2+bc)(2b^2+ac)]
=[4a^2b^2+c(a^3+b^3)]/[4a^2b^2+2c(a^3+b^3)+abc^2]
=[4a^2b^2+c(3abc-c^3)]/[4a^2b^2+2c(3abc-c^3)+abc^2]
=[4a^2b^2+3abc^2-c^4]/[4a^2b^2+6abc^2-2c^4+abc^2]
=[4a^2b^2+3abc^2-c^4]/[4a^2b^2+7abc^2-2c^4]
=[(4ab-c^2)(ab+c^2)]/[(4ab-c^2)(ab+2c^2)]
=(ab+c^2)/(ab+2c^2)
所以:a^2/[2a^2+bc]+b^2/[2b^2+ac]+c^2/[2c^2+ab]
=(ab+c^2)/(ab+2c^2)+c^2/(2c^2+ab)
=(ab+c^2+c^2)/(2c^2+ab)
=(2c^2+ab)/(2c^2+ab)
=1
a+b+c=0=====>a+b=-c
a^3+b^3=(a+b)(a^2-ab+b^2)=-c[(a+b)^2-3ab]=-c(c^2-3ab)=3abc-c^3
a^2/[2a^2+bc]+b^2/[2b^2+ac]
=[a^2(2b^2+ac)+b^2(2a^2+bc)]/[(2a^2+bc)(2b^2+ac)]
=[4a^2b^2+c(a^3+b^3)]/[4a^2b^2+2c(a^3+b^3)+abc^2]
=[4a^2b^2+c(3abc-c^3)]/[4a^2b^2+2c(3abc-c^3)+abc^2]
=[4a^2b^2+3abc^2-c^4]/[4a^2b^2+6abc^2-2c^4+abc^2]
=[4a^2b^2+3abc^2-c^4]/[4a^2b^2+7abc^2-2c^4]
=[(4ab-c^2)(ab+c^2)]/[(4ab-c^2)(ab+2c^2)]
=(ab+c^2)/(ab+2c^2)
所以:a^2/[2a^2+bc]+b^2/[2b^2+ac]+c^2/[2c^2+ab]
=(ab+c^2)/(ab+2c^2)+c^2/(2c^2+ab)
=(ab+c^2+c^2)/(2c^2+ab)
=(2c^2+ab)/(2c^2+ab)
=1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询