∫(0,π/4) ln(1+tanx) dx 定积分问题

Lety=π/4-xthendy=-dxWhenx=0,y=π/4,whenx=π/4,y=0J=∫(0,π/4)ln(1+tanx)dx=∫(π/4,0)ln[1+ta... Let y = π/4 - x then dy = -dx
When x = 0,y = π/4,when x = π/4,y = 0
J = ∫(0,π/4) ln(1+tanx) dx
= ∫(π/4,0) ln[1+tan(π/4-y)] -dy
= ∫(0,π/4) ln[1 + (tan(π/4)-tany)/(1+tan(π/4)tany)] dy
= ∫(0,π/4) ln[1 + (1-tany)/(1+tany)] dy
= ∫(0,π/4) ln[(1+tany+1-tany)/(1+tany)] dy
= ∫(0,π/4) [ln(2) - ln(1+tany)] dy /*这一行到
= ln(2) * ∫(0,π/4) dy - J 这一行的转换是为什么!?*/
2J = ln(2) * (π/4-0)
J = (π*ln2)/8
难道 ln(1+tanx)dx=ln(1+tany)dx
是的话 为什么相等?
求解答。谢谢
展开
百度网友07ed3ab
推荐于2016-12-01 · TA获得超过571个赞
知道小有建树答主
回答量:305
采纳率:0%
帮助的人:350万
展开全部
不是说ln(1+tanx)dx=ln(1+tany)dx这两个一样,这两者不能化等号
而是∫(0,π/4) ln(1+tanx) dx 和对于∫(0,π/4) ln(1+tany) dy
当积分形式一样 而被积函数和对应积分变量一样,对应的积分变量取值一样,那么做出来结果是一样的,因为定积分其实质上是一个数

正如∫(0,1) xdx=1/2 ∫(0,1) ydy=1/2 这两个定积分的结果是一样的
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式