说明:对于任何正整数n,2^n+4-2^n必能被30整除
2个回答
展开全部
By MI
n=1
LS=2^(1+4) -2^1=30 is divisible by 30
p(1) is true
Assume p(k) is true
ie
2^(k+4) -2^(k) = 30m ( m is +ve integer )
for n=k+1
2^(k+5) - 2^(k+1)
= 2. 2^(k+4) - 2.2^(k)
=2(2^(k+4) -2^(k))
=60m
is divisible by 30
p(k+1) is true
By principle of MI, it is true for all n
n=1
LS=2^(1+4) -2^1=30 is divisible by 30
p(1) is true
Assume p(k) is true
ie
2^(k+4) -2^(k) = 30m ( m is +ve integer )
for n=k+1
2^(k+5) - 2^(k+1)
= 2. 2^(k+4) - 2.2^(k)
=2(2^(k+4) -2^(k))
=60m
is divisible by 30
p(k+1) is true
By principle of MI, it is true for all n
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询