级数求和问题
1个回答
展开全部
运用Fourier级数逆分析
不防设f(x)是定义在[-pi,pi]上的奇函数
且在(0,pi)上二阶可导则f(x)的Fourier级数为
f(x)=sum{b_nsinnx},n from 1 to +inf
其中b_n=(2/pi)int{(0,pi)f(x)*sinnx}dx,
'int'表示积分分部积分有
b_n=2[(-1)^(n+1)]*f(pi)/(n*pi)+2f(0)/(n*pi)-[2/(n^2*pi)]int{(0,pi)f''(x)sinnx}dx
这里只需b_n中只含1/n的项,
因此令f''(x)=0,f(pi)=0
解得f(x)=C(pi-x)
C为任意常数,这里取C=1
那么b_n=2/n
且pi-x=sum{2sinnx/n},0<x<=pi
故sum{sink/k}=1/2(pi-1)
类似的可分析sum{cosn/(1+n^2)},n=0..inf
cosn也可换为|cosn|. </x<=pi
不防设f(x)是定义在[-pi,pi]上的奇函数
且在(0,pi)上二阶可导则f(x)的Fourier级数为
f(x)=sum{b_nsinnx},n from 1 to +inf
其中b_n=(2/pi)int{(0,pi)f(x)*sinnx}dx,
'int'表示积分分部积分有
b_n=2[(-1)^(n+1)]*f(pi)/(n*pi)+2f(0)/(n*pi)-[2/(n^2*pi)]int{(0,pi)f''(x)sinnx}dx
这里只需b_n中只含1/n的项,
因此令f''(x)=0,f(pi)=0
解得f(x)=C(pi-x)
C为任意常数,这里取C=1
那么b_n=2/n
且pi-x=sum{2sinnx/n},0<x<=pi
故sum{sink/k}=1/2(pi-1)
类似的可分析sum{cosn/(1+n^2)},n=0..inf
cosn也可换为|cosn|. </x<=pi
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询