已知函数f(x)=e^x-ax,a>0,若对一切x∈R,f(x)≥1恒成立,求a的取值范围
3个回答
展开全部
即f(X)-1≥0恒成立
令g(X)=f(x)-1=e^x-ax-1;
g'(x)=e^x-a=0,x=㏑a,
当x<㏑a时,g'(x)<0;当x>㏑a时,g'(x)>0,
则g(x)最小值为g(㏑a)=a-a㏑a-1≥0恒成立,然后……
令g(X)=f(x)-1=e^x-ax-1;
g'(x)=e^x-a=0,x=㏑a,
当x<㏑a时,g'(x)<0;当x>㏑a时,g'(x)>0,
则g(x)最小值为g(㏑a)=a-a㏑a-1≥0恒成立,然后……
追问
求出来答案不对啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
要满足题意,只需f(x)的最少值大于f'(x1)=0,x1=(1/a)ln(1/a),则f(x)在(负无穷,x1)单调递减,在(x1,正无穷)上单调递增,f(x)的最小
追问
可以把具体的过程写下来吗
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询