如图1,已知直线y=kx与抛物线y=-4 27 x2+22 3 交于点A(3,6). (1)求直线y=kx的解析式和线段OA的

如图1,已知直线y=kx与抛物线y=-4/27x²+22/3交于点A(3,6).(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点... 如图1,已知直线y=kx与抛物线y=-4/27x²+22/3交于点A(3,6).
(1)求直线y=kx的解析式和线段OA的长度;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?
展开
ItsRaepxn
2012-08-16 · TA获得超过2323个赞
知道小有建树答主
回答量:236
采纳率:0%
帮助的人:190万
展开全部
解:(1)把点A(3,6)代入y=kx 得;
∵6=3k,
∴k=2,
∴y=2x.
OA=3倍根号5
(2)QM分之QN是一个定值,理由如下:
如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.
①当QH与QM重合时,显然QG与QN重合,
此时QN分之QM=QG分之QH=OH分之QH=tan角AOM=2
②当QH与QM不重合时,
∵QN⊥QM,QG⊥QH
不妨设点H,G分别在x、y轴的正半轴上,
∴∠MQH=∠GQN,
又∵∠QHM=∠QGN=90°
∴△QHM∽△QGN…
∴QN分之QM=QG分之QH=OH分之QH=tan角AOM=2
当点P、Q在抛物线和直线上不同位置时,同理可得QM分之QN=2.①①
(3)如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R
∵∠AOD=∠BAE,
∴AF=OF,
∴OC=AC=2分之1OA=2分之3根号5
∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
∴△AOR∽△FOC,
∴OC分之OF=OR分之AO=3分之3倍根号5=根号5
∴OF=2分之3根号5乘以根号5=2分之15
∴点F(2分之15,0),
设点B(x,-4分之27x的平方+3分之22),
过点B作BK⊥AR于点K,则△AKB∽△ARF,
∴FR分之BK=AR分之AK
即7.5-3分之x-3=6分之6-(-4分之27x的平方+3分之22)
解得x1=6,x2=3(舍去),
∴点B(6,2),
∴BK=6﹣3=3,AK=6﹣2=4,
∴AB=5
(求AB也可采用下面的方法)
设直线AF为y=kx+b(k≠0)把点A(3,6),点F(2分之15,0)代入得
k=-3分之4,b=10,
∴y=-3分之4x+10
∴{y=-3分之4x+10
{y=-4分之27x的平方+3分之22
∴{x1=3 {x2=6
{y1=6(舍去) {y2=2
∴B(6,2),
∴AB=5…

在△ABE与△OED中
∵∠BAE=∠BED,
∴∠ABE+∠AEB=∠DEO+∠AEB,
∴∠ABE=∠DEO,
∵∠BAE=∠EOD,
∴△ABE∽△OED.…
设OE=x,则AE=3倍根号5﹣x (0<x<3倍根号5),
由△ABE∽△OED得AB分之AE=OE分之OD
∴5分之3倍根号5-x=x分之π
∴m=5分之1x(3倍根号5-x)=-5分之1x的平方+5分之3根号5(0<x<3倍根号5)
∴顶点为(2分之3根号5,4分之9)
如答图3,当m=4分之9时,OE=x=2分之3根号5,此时E点有1个;
当0<m<4分之9时,任取一个m的值都对应着两个x值,此时E点有2个.
∴当m=4分之9时,E点只有1个…
当0<m<4分之9时,E点有2个…
打得很辛苦的。。请采纳
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式