在[0,1]上,函数f(x)=ln(x+1)满足拉格朗日中值定理中的ξ______。
展开全部
【答案】:令f(x)=ln(x+1)
f'(ε) = 1/(ε+1)
(ln(1+1)-ln(0+1))/(1-0) = f'(ε) = 1/(ε+1)
即 ln2=1/(ε+1)
解得 ε = 1/ln2 -1
f'(ε) = 1/(ε+1)
(ln(1+1)-ln(0+1))/(1-0) = f'(ε) = 1/(ε+1)
即 ln2=1/(ε+1)
解得 ε = 1/ln2 -1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询